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ABSTRACT 

 
Debiasing Few-Shot Class-Incremental Learning 

via Dynamic Feature-Classifier Alignment 
 

 

Few-shot class-incremental learning (FSCIL) addresses the problem of continuously learning 
new classes from only a few training samples, while retaining knowledge of previously learned ones. 
In this setting, the severe imbalance between base and incremental classes often leads to a strong 
bias toward the base classes and limited adaptability to new classes. To tackle this issue, recent 
approaches leverage the geometric properties of the simplex equiangular tight frame (ETF), which 
emerges in the terminal phase of deep model training as part of the neural collapse phenomenon. 
However, existing ETF-based methods assume a fixed classifier determined at the base session with 
a pre-defined number of classes, which is impractical in FSCIL where new classes are continually 
added. In this study, we propose a Dynamic Hierarchical ETF (DH-ETF) classifier that incorporates 
semantic similarity among classes to achieve both scalability and discriminability. After training on 
the base session, we construct a hierarchy map by clustering the base class prototypes and build a 
hierarchical ETF classifier composed of a fixed cluster-level ETF and adaptable per-cluster class-
level ETFs. In each incremental session, the class-level ETFs are updated based on the number of 
new classes and their similarity to the base classes in the embedding space. This design preserves 
prior knowledge through the fixed cluster-level representation while facilitating adaptation to new 
classes via the updated class-level ETFs guided by the hierarchy. Experiments on CIFAR-100 show 
that our method outperforms existing state-of-the-art approaches, effectively addressing base-class 
bias by achieving superior incremental class performance while alleviating catastrophic forgetting. 
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1. Introduction 
 

1.1. Research Background 

 

Deep neural networks (DNNs) have achieved remarkable success across a range of real-world 
domains, often matching or even surpassing human-level performance [1-3]. However, when trained 
on data streams, they suffer from catastrophic forgetting [4, 5], which refers to losing previously 
acquired knowledge while adapting to evolving data distributions. To tackle this challenge, class-
incremental learning (CIL) has been introduced as a deep learning framework that enables models 
to continuously accommodate new classes over time while preserving knowledge from previously 
observed ones [6, 7]. While CIL has been widely studied due to its great potential in dynamically 
incorporating new classes, it tends to be less effective in scenarios where only a small number of 
new samples are available. This type of scenario commonly arises in real-world contexts, such as 
diagnosing rare diseases in the medical field [8, 9] or recognizing unseen objects in autonomous 
driving [10]. Inspired by such practical constraints, the few-shot class-incremental learning (FSCIL) 
paradigm has emerged as a more realistic yet challenging extension of CIL, under the assumption 
that new classes are introduced with only a few samples [11, 12]. Specifically, the FSCIL task 
consists of a base session that includes a large number of classes with sufficient training samples per 
class, followed by multiple incremental sessions where an extremely limited number of samples are 
provided [13]. Such imbalance in FSCIL poses a unique challenge beyond catastrophic forgetting, 
as the model’s performance tends to be biased toward the base classes. 

FSCIL has gained much attention due to its practical importance and challenging nature. Early 
approaches primarily focus on maintaining the discriminability of previous classes when training on 
new data. These methods are referred to as backward compatible FSCIL [13, 14], which typically 
finetune the backbone network with knowledge distillation schemes to reduce the forgetting [11, 15], 
or freeze the backbone trained on base classes and update only the projection layer or classifier head 
during incremental sessions [16, 17]. However, these methods still suffer from limited adaptability 
to newly introduced classes, as the model tends to retain a strong bias toward the base classes and 
struggles to effectively incorporate new information. A better solution is to anticipate future updates 
in advance when training the early version of a model. Such forward compatibility is regarded a 
more desirable property than backward compatibility for FSCIL. Forward compatible approaches 
aim to prepare for possible future updates during base session training, by learning a more compact 
embedding space for base classes to reserve space for new classes [18-21]. 

Among forward compatible methods, one notable line of work employs a simplex equiangular 
tight frame (ETF) classifier [21], inspired by the recently discovered Neural Collapse phenomenon. 
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Neural collapse refers to the behavior of deep models at the terminal phase of training, where the 
last-layer features of each class collapse into a single vertex aligned with their respective class means 
(i.e., prototypes), which together form a simplex ETF [22]. A simplex ETF is a geometric structure 
in which all vectors are equiangular, thereby maximizing the pair-wise angles among these vectors. 
[21] adopts an ETF classifier in FSCIL to construct a well-structured feature space that facilitates 
the seamless addition of new classes. It is designed to reserve balanced space for future classes by 
maximizing the inter-class distance while maintaining equal angles between class prototypes. 

 

1.2. Motivations and Contributions 

 

The ETF classifier has emerged as a powerful tool, achieving state-of-the-art performance in 
scenarios where training data for certain classes is limited. However, in this study, we focus more 
on the practical applicability of the ETF classifier in class-incremental settings. [21] pre-defines an 
ideal set of directions for class-wise features using the ETF classifier during the base session, and 
subsequently aligns new class features to these directions in later sessions without adjusting the 
classifier weights. Even though such strategy proves to be effective in minimizing representation 
shifts, this “fixed” classifier design raises a fundamental question: is it appropriate to use a classifier 
pre-assigned in the base session when new classes continue to arrive? 

Figure 1 illustrates the average accuracy of [21] on CIFAR-100 [23], with the ETF classifier 
dimensionality K varying from 60 to 150. When K < 100, the total number of classes eventually 
exceeds K, making the classifier unable to predict additional classes beyond K. Therefore, we set 
the accuracy of these classes to zero. The model reaches its highest performance when K equals the 
total number of classes (i.e., K = 100), while the accuracy drops sharply for K < 100 and gradually 
declines for K > 100. These results indicate that FSCIL with a pre-defined ETF classifier is optimal 
only when the number of classes in the dataset is specified in advance. However, this assumption is 
impractical in class-incremental scenarios, where new classes continuously emerge over time. 

A recent study highlights the infeasibility of a fixed ETF classifier in class-incremental settings, 
and proposes dynamic neural collapse in the context of online task-free continual learning [24]. In 
each incremental phase, the ETF classifier is recomputed based on the old and new class prototypes 
to reflect the increased number of classes. While this approach is practical and promising in that it 
allows continuous adjustment of the ETF classifier during incremental training, it also introduces a 
trade-off: it may exacerbate forgetting of previously observed classes and lead to overfitting to the 
newly added classes, which can undermine the overall discriminability between classes. 
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Figure 1. Performance on CIFAR-100 with ETF dimensions from 60 to 150. Varying dimensions are only 
applied to NC-FSCIL which requires a fixed ETF classifier. 

 

In this study, we leverage hierarchical information derived from the semantic similarity among 
classes to construct a scalable ETF classifier while compensating for the performance degradation 
that may arise from updating the classifier weights. The use of hierarchical information to improve 
the performance of deep classification models has been extensively studied across various domains, 
including medical [25-27] and e-commerce [28, 29] applications. Moreover, it has also demonstrated 
its effectiveness in imbalanced learning [30-32] and continual learning [1, 33]. Using a hierarchical 
structure allows the classification problem to be addressed in stages—solve a less complex, higher-
level task first, and utilize its resulting information to guide a more fine-grained, lower-level task. 
Inspired by this insight, we aim to strike a balance between the scalability and performance of the 
ETF classifier by decomposing it into two levels, each assigned with a distinct role. After training 
on the base session, we construct a semantic hierarchy map by clustering the prototypes of the base 
classes. When a new class arrives, it is assigned to a class cluster based on its semantic similarity to 
the cluster centroids, and the hierarchy map is updated accordingly. This hierarchy map is used to 
build a dual-level ETF classifier consisting of a cluster-level and a class-level component. The 
cluster-level ETF classifier is constructed as a (K+1)-dimensional ETF with an additional out-of-
distribution (OOD) cluster, while the class-level ETF classifier comprises K distinct ETF structures, 
each designed to separate the specific classes within its corresponding cluster. During incremental 
sessions, we finetune only the dual-level projection layers appended to the backbone, which drive 
the last layer features at each level toward their respective target ETF prototypes. The training is 
regularized by a dependency term, which guides the model to make predictions consistent with the 
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hierarchical structure. The cluster-level ETF classifier remains fixed while only the class-level ETF 
classifier is recalculated as new classes arrive. 

This hierarchy-aware design enhances the distinction between semantically similar few-shot 
categories by enabling fine-grained differentiation at the class level within each cluster. It also shifts 
the burden of maintaining priorly acquired knowledge to the cluster-level features through a fixed 
cluster-level ETF classifier, while continually adapting to newly introduced classes by aligning their 
class-level features to the updated class-level ETF classifier. Our proposed Dynamic Hierarchical 
ETF (DH-ETF) classifier not only effectively prevents catastrophic forgetting, but also mitigates the 
inherent bias of FSCIL by achieving superior incremental class performance compared to other state-
of-the-art methods. The contributions of this paper are summarized as follows: 

• We propose a novel Dynamic Hierarchical ETF (DH-ETF) classifier that leverages class-
wise semantic hierarchy to achieve both scalability and discriminability in FSCIL. 

• We demonstrate through extensive experiments that our method outperforms other state-
of-the-art methods, addressing the base class bias by achieving superior incremental class 
performance while effectively alleviating catastrophic forgetting. 

 

 

2. Related Work 

 

Few-Shot Class-Incremental Learning (FSCIL). As an extended variant of conventional class-
incremental learning (CIL), FSCIL addresses the challenge of continually adapting to new classes 
using only a few samples per class while maintaining previously acquired knowledge. The FSCIL 
scenario is first introduced by TOPIC [11], which employs the neural gas (NG) structure to model 
the topology between the base and incremental classes. Recent efforts can be broadly categorized 
into backward compatible and forward compatible approaches. Backward compatible approaches 
primarily focus on preserving the knowledge of previously observed classes, typically by adopting 
distillation schemes when finetuning the backbone network [15], or by freezing the backbone and 
updating only the classifier [16, 17]. On the other hand, forward compatible FSCIL methods aims 
to prepare for possible future class updates during base training. A recent forward compatible work 
studies FSCIL from the perspective of the widely discussed neural collapse phenomenon [21]. It 
utilizes the simplex equiangular tight frame (ETF) structure to create a stable incremental classifier 
for FSCIL. It achieves state-of-the-art performance by fixing the classifier weights to the optimal 
symmetric ETF configuration and aligning the features of new classes to this structure. However, it 
lacks scalability since its classifier weights are pre-assigned at the initial training stage and frozen 
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throughout incremental training. In contrast, our method continually updates the ETF classifier to 
adapt to the number of new classes in each session. We mitigate the representation shift caused by 
adjusting the classifier weights by leveraging class semantics and hierarchy. 

 

Neural Collapse. Neural collapse is a phenomenon observed at the terminal phase of training deep 
neural networks for classification tasks, particularly when models are trained to zero training error 
using cross-entropy loss and mean-squared error functions [22]. As a result of this phenomenon, the 
class-wise means of the last-layer features collapse to an optimal geometric structure known as the 
simplex equiangular tight frame (ETF). Recent studies have demonstrated that a simple last-layer 
optimization based on the ETF classifier delivers strong generalization performance across different 
learning paradigms, including imbalanced learning [34-36], transfer learning [37, 38]. In particular, 
it has been adopted in various continual learning scenarios [21, 24, 39], such as class-incremental 
learning, domain-incremental learning, and online continual learning. NC-FSCIL [21] extends this 
idea to the few-shot class-incremental learning (FSCIL) setting, where only a few samples per class 
are available for new classes. It pre-defines an ETF classifier and subsequently aligns the new class 
prototypes to this fixed structure. However, due to its reliance on a “fixed” classifier, it is hard to 
achieve optimal performance without knowing the total number of classes encountered throughout 
the incremental process. In response, DYSON [24] proposes to dynamically recompute the ETF 
structure with new class prototypes in the context of online continual learning. A recent approach in 
domain-incremental learning (DIL) aligns image features from varying image domains to a fixed 
dual-level ETF classifier constructed from the text embeddings of class names [39]. Our method is 
inspired by [39], but we dynamically update the hierarchical ETF classifier in a class-incremental 
fashion. To the best of our knowledge, we are the first to leverage class semantics in FSCIL from 
the neural collapse perspective. 

 

 

3. Preliminaries 

 

3.1. Few-Shot Class-Incremental Learning 

 

The few-shot class-incremental learning (FSCIL) task aims to adapt a model to a continuously 
expanding label space using only a few labeled samples for each newly introduced classes. The task 
begins with a base session including ample training data, followed by multiple incremental sessions 
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where only a limited number of training samples are available. In each session, the model is trained 
solely on the data pertinent to that session, with no access to data from previous sessions. 

FSCIL trains a model incrementally on a sequence of training datasets {𝒟("), 𝒟($), … , 𝒟(%)}, 

where 𝒟(&) = {(𝑥' , 𝑦')}'($
)𝒟(")), 𝒟(") is the base session, and T is the number of incremental sessions. 

The base session 𝒟(") contains a large label space and sufficient training images for each class. In 
each incremental session 𝒟(&) for t > 0, there are only a few labeled images and we have +𝒟(&)+ =
𝑛𝑘, where n is the number of classes and k is the number of samples per class, known as n-way k-
shot. The label space in each session does not overlap with any other session. For evaluation in the 
t-th session, the label space of the test dataset consists of all the encountered classes in the previous 
and current sessions. 

 

3.2. Simplex Equiangular Tight Frame 

 

A simplex equiangular tight frame (ETF) is a geometric structure formed at the terminal phase 
of training, which maximizes the pair-wise angles of all vectors. Specifically, it refers to a matrix 
composed of K vectors 𝐸 = [𝑒$, … , 𝑒+] ∈ ℝ,×+ that satisfies: 

𝐸 = 4 𝐾
𝐾 − 1𝑈 9𝐼+ −

1
𝐾 1+1+

.; 

where 𝑈 ∈ ℝ,×+  is an orthogonal matrix that allows rotation and satisfies 𝑈.𝑈 = 𝐼+ , 𝐼+  is the 
identity matrix, and 1+ is an all-ones vector. All column vectors in E have the same ℓ/ norm and 
any pair satisfies: 

𝑒'.𝑒0 = =	
1

−	
$

+2$
					
if		𝑖 = 𝑗
if		𝑖 ≠ 𝑗 

The pair-wise angle −	 $
%&$ is the maximal equiangular separation of K vectors in ℝ,×+. 

 

3.3. Dual-Level ETF Classifier 
 

The concept of dual-level ETF classifier is first introduced by DualCP [39] in the context of 
domain-incremental learning (DIL). In DIL scenarios, image features vary across domains while the 
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semantic meaning of classes remains invariant. To this end, DualCP leverages the domain-invariant 
text embedding space as an anchor. Specifically, it constructs a fixed hierarchical ETF classifier in 
the text space, which is assumed to be stable across domains, and aligns the varying image features 
from different domains to this anchor space. The text embedding space remains invariant throughout 
sessions, enabling consistent alignment even as the image space changes. This facilitates domain-
invariant representation learning by decoupling domain-specific variations from class semantics. 

However, applying this approach directly to class-incremental learning (CIL) is suboptimal, as 
CIL introduces new classes over time and the text embedding space may not adequately reflect the 
evolving class distribution. In CIL, both the image and text feature spaces are subject to change as 
new classes are added. Therefore, maintaining a fixed text-based anchor can introduce noise rather 
than providing meaningful guidance, and can even exacerbate forgetting in the image space. Instead, 
it becomes crucial to construct a hierarchy-aware classifier that dynamically captures the semantic 
relationships among newly added classes while preserving meaningful inter-class separability in the 
image feature space. 

Our method tackles this limitation by dynamically creating a hierarchical ETF classifier based 
on the semantics of class prototypes extracted from the image space itself. Unlike DualCP, which 
fixes the text embeddings as anchors and aligns the image features to them, we leverage the semantic 
hierarchy among the image prototypes to create a more adaptable and meaningful image classifier 
that evolves as new classes are added. This design enables the classifier to maintain semantically 
consistent representation, while avoiding the risk of noise from misaligned anchors. Furthermore, 
when training, we incorporate a dependency loss term to enforce consistency between the cluster-
level and class-level predictions, which explicitly encodes the hierarchical structure in the projection 
layers and allows for a more robust feature space. 

 

 

4. Methods 

 

Figure 2 depicts the overall framework of our proposed Dynamic Hierarchical ETF classifier 
(DH-ETF) approach. Our method consists of two main components: (a) Neural Collapse-Inspired 
Hierarchical Label Construction, which constructs a hierarchical ETF classifier based on semantic 
similarity among classes, and (b) Dynamic Hierarchical Feature-Classifier Alignment, which trains 
dual-level projection layers using the updated hierarchical ETF classifier. Section 4.1. describes how 
the hierarchical ETF is constructed in the base session, and dynamically updated during incremental 
sessions. Section 4.2. presents the hierarchical loss function used to train each projection layer. 
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Figure 2. The overall framework of Dynamic Hierarchical ETF (DH-ETF). 

 

4.1. Neural Collapse-Inspired Hierarchical Label Construction 

 

This section describes how the hierarchical ETF is initially constructed during the base session 
and how it is updated in the incremental sessions. In the base session, we first extract the base class 
prototypes using the trained encoder, then construct the cluster-level and class-level ETF classifiers 
based on the clustering results of these prototypes. In each incremental session, the class hierarchy 
is updated based on the semantic similarity between the prototypes of newly introduced classes and 
the existing cluster centroids. The class-level ETF classifier is subsequently updated according to 
the revised hierarchy.  
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4.1.1. Base Session 

 

Prototype Clustering. To extract meaningful features for the base classes, we first train the base 
encoder on the base class training data using the cross-entropy (CE) loss. With the trained encoder, 
we compute the class-wise means, referred to as prototypes, for each base class. These prototypes 
are then used to construct a semantic hierarchy map of the classes through clustering. The clustering 
is performed based on a similarity matrix S, which is computed by calculating the pair-wise cosine 
similarities between all base prototypes 𝑷". Classes whose cosine similarity exceeds a predefined 
hyperparameter p are grouped into the same class cluster. This process results in K clusters. 

Out-of-Distribution Cluster Initialization. To handle incremental classes significantly different 
from the existing base classes, we pre-define an out-of-distribution (OOD) cluster to reserve space 
for such OOD classes in advance. We first compute the centroids of the K clusters obtained through 
prototype clustering 𝑪 = [𝑐", … , 𝑐+], and assign a vector o that is orthogonal to all K centroids as 
the centroid of the OOD cluster. The K+1 centroid vectors 𝑪3 = [𝑪; 𝑜] including K in-distribution 
(ID) cluster centroids C and a OOD cluster centroid o are used to construct a (K+1)-dimensional 
cluster-level ETF classifier. 

Hierarchical ETF Construction. We construct the hierarchical ETF classifier using the cluster 
centroids 𝑪3 = [𝑐", … , 𝑐+ , 𝑜] and base prototypes 𝑷". The ETF structure is derived by performing 
QR decomposition on a specific matrix to obtain an orthogonal matrix Q [34]. To build the dual-
level ETF, we perform two separate ETF construction processes. First, we apply QR decomposition 
to the matrix of cluster centroids 𝑪3 = [𝑐", … , 𝑐+ , 𝑜] to generate the (K+1)-dimensional cluster-level 
ETF classifier. For the class-level ETF classifier, we create an ETF structure for each cluster 
individually using the prototype matrix of the classes within that cluster, resulting in K distinct class-
level ETFs. Since there are no subclasses assigned to the OOD cluster at this stage, the class-level 
ETFs are defined only for the K clusters obtained from prototype clustering. 

 

4.1.2. Incremental Sessions 

 

Out-of-Distribution Cluster Assignment. When new classes arrive during incremental sessions, 
we first extract new class prototypes matrix 𝑷& and determine whether each class belongs to the in-
distribution (ID) or the out-of-distribution (OOD) set. This step ensures that classes distributions 
significantly different from the base classes are assigned to the OOD cluster before the remaining 
classes are assigned to the K ID clusters obtained through prototype clustering. For OOD detection, 
we adopt the neural collapse-based OOD detection (NECO) [40] technique. The NECO score is 
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computed as the relative norm of a new class prototype within the principal space spanned by the 
base prototypes, normalized by the norm of the new class prototype itself. Given principal space 
𝑃 ∈ ℝ4×, spanned by the d eigenvectors of the latent space 𝐻 ∈ ℝ4×,, the NECO score can be 
formally described as: 

𝑁𝐸𝐶𝑂(𝑥) =
‖𝑃ℎ5(𝑥)‖
‖ℎ5(𝑥)‖

=
Pℎ5(𝑥).𝑃𝑃.ℎ5(𝑥)
Pℎ5(𝑥).ℎ5(𝑥)

 

where ℎ5(𝑥) is the feature vector of a certain input image 𝑥. If the NECO score falls below a pre-
defined threshold r, the class is categorized as OOD. The NECO score ranges from 0 to 1. Classes 
identified as OOD are then assigned to the OOD cluster as its subclasses. 

In-Distribution Cluster Assignment. New classes identified as in-distribution (ID) are assigned to 
the clusters formed during the base session based on cosine similarity. Specifically, we compute the 
cosine similarity between each new class prototype and all K ID cluster centroids 𝑪 = [𝑐", … , 𝑐+], 
and assign each class to the cluster corresponding to the most similar centroid. 

Hierarchical ETF Update. The hierarchy is updated based on the cluster assignments of the newly 
introduced classes, and the class-level ETF classifier is recalculated accordingly. For clusters with 
newly added classes, we recompute the class-level ETF by performing QR decomposition on the 
updated prototype matrix of each cluster and deriving the orthogonal matrix Q. The cluster-level 
ETF classifier remains fixed, which allows the model to retain the existing hierarchy information 
and effectively utilize it in later sessions. 

 

4.2. Dynamic Hierarchical Feature-Classifier Alignment 

 

This section describes how the hierarchical ETF classifier constructed in Section 4.1. is utilized 
for incremental training. During training, the base encoder is kept frozen, and only the projection 
layers appended to the encoder are updated. The projection layers are organized in a dual-level 
structure, consisting of a cluster-level projection layer and a class-level projection layer. Each layer 
is trained using the proposed Hierarchical Dot-Regression (HDR) loss, which encourages the feature 
representations at each level to align closely with their respective target ETF vectors. The HDR loss 
is further regularized by the dependency loss, which enforces predictions to be consistent with the 
hierarchical structure. Following a commonly adopted strategy in FSCIL studies [17, 21], we include 
base class prototypes 𝑷" for training in incremental sessions to reduce catastrophic forgetting. 
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4.2.1. Hierarchical Dot-Regression Loss 

 

To train the dual-level projection layers, we propose the Hierarchical Dot-Regression (HDR) 
loss, which aligns the feature representations at each level to the hierarchical ETF classifiers. The 
HDR loss consists of two dot-regression (DR) loss terms—one for each level of the hierarchy— and 
an additional dependency loss (described in Section 4.2.2.). The DR loss is derived by simplifying 
the conventional cross-entropy (CE) loss to eliminate the “push” term [34]. The gradient of CE loss 
is composed of a pull term and a push term. The pull term attracts features towards their classifier 
prototype of the same class. The push term repulses the features away from the prototypes of other 
classes. The DR loss retains only the “pull” component. This design assumes that the optimal class 
prototypes are already provided by the ETF classifier, making the push term redundant. Formally, 
the DR loss for a normalized feature 𝜇̂' and its corresponding ETF prototype 𝑒6' is given by: 

ℒ(𝜇̂' , 𝐸) =
1
2 U𝑒6'

.𝜇̂' − 1V
/
 

where 𝐸 is the ETF classifier matrix and 𝑒6' is the prototype of class 𝑦' in 𝐸. By focusing solely on 
the “pull” gradients, the DR loss effectively aligns the feature representations with the optimal ETF 
structure without introducing unnecessary repulsion. 

From a dual-level perspective, the cluster-level DR loss ℒ$ trains the cluster-level projection 
layer 𝑔$ using the cluster-level ETF classifier 𝐸$ to encourage inter-cluster separation. Similarly, 
the class-level DR loss ℒ/ trains the class-level projector 𝑔/ using the class-level ETF classifier to 
enhance intra-cluster separation. Together, these two terms guide the feature representations toward 
the respective ETF prototypes at each level of the hierarchy, ensuring both coarse-level and fine-
grained discriminability. The dependency loss ℒ4  enforces the model to produce predictions 
consistent with the hierarchical structure. The total loss combines these components as: 

ℒ748 = 𝛼 ∙ ℒ$ + 𝛽 ∙ ℒ/ + 𝜆 ∙ ℒ4 

where 𝛼, 𝛽, and 𝜆 are the hyperparameters controlling the contributions of each term. 

 

4.2.2. Dependency Loss 

 

To enforce consistency between the hierarchical predictions at different levels, we employ the 
dependency loss ℒ4, which regularizes the model to make predictions that adhere to the hierarchy 
defined by prototype clustering. It is designed to penalize cases where the predicted class does not 
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belong to the predicted cluster, ensuring that the class-level prediction remains consistent with the 
higher-level cluster assignment. By explicitly incorporating this hierarchical dependency into the 
training objective, the model learns to maintain the semantic structure of classes during inference. 
Formally, the dependency loss is defined as: 

ℒ4 = 𝜌$𝔻∙ℙ$𝜌/𝔻∙ℙ( − 1 

where 𝜌' is a constant penalty factor for level 𝑖. The indicator terms 𝔻 and ℙ' are defined as: 

𝔻 = `	10					
if		𝑦b/ ⇏ 𝑦b$
if		𝑦b/ ⇒ 𝑦b$

								ℙ' = `	10					
if		𝑦b' ≠ 𝑦'
if		𝑦b' = 𝑦'

 

where 𝑦b' is the predicted class at level 𝑖, and 𝑦' is the corresponding ground-truth label. Here, 𝔻 
activates the penalty if the class-level prediction does not fall within the predicted cluster, and ℙ' 
indicates misclassification at level 𝑖. Through this design, the dependency loss enforces the model 
to respect the hierarchy, improving consistency in the hierarchical predictions. 

 

 

5. Experiments 

 

In this section, we evaluate our method on the CIFAR-100 [23] dataset and compare the results 
with state-of-the-art FSCIL methods. We also visualize the representation space using UMAP [41] 
projection to assess the hierarchical feature-classifier alignment. Finally, we conduct an evaluation 
to verify the effectiveness of base prototype clustering and OOD detection. 

 

5.1. Experimental Settings 

 

Dataset. Following previous works in FSCIL, we conduct experiments on CIFAR-100 benchmark 
dataset [23] using the data splits in [11]. 60 classes are allocated for base session with 500 training 
samples per class. Each of the 8 incremental sessions contains 5 classes with 5 training samples per 
class (i.e., a 5-way 5-shot setting). 

Evaluation Metrics. Following the popular evaluation protocol of FSCIL [11, 16], we adopt the 
average accuracy (aAcc) as the primary evaluation metric. Unlike prior works that report only the 
overall average accuracy, we additionally report the average accuracy on base classes (aAccb) and 



 13 

incremental classes (aAcci) separately. Furthermore, we propose the base-incremental gap (BIG) as 
a new metric to quantify the performance disparity between base and incremental classes. BIG is 
designed to measure the degree of base-class bias in the model, computed as the average difference 
between base and incremental performance across sessions. Therefore, lower BIG values indicate 
better balance. However, since it captures only the raw performance gap, it should be interpreted in 
conjunction with the absolute performance of base and incremental classes. 

Compared Methods. We compare our results against three baselines: TEEN [42], LIMIT [20], and 
FACT [18]. TEEN calibrates new class prototypes in the embedding space based on their semantic 
similarity to the base classes. This idea makes it a relevant baseline, as it also leverages inter-class 
semantic relationships, sharing the same intuition as our approach. LIMIT and FACT are forward 
compatible methods designed to prepare for future updates during the base session. 

Implementation Details. All methods are implemented with PyTorch [43]. We use ResNet-12 [3] 
as our backbone network, whereas the baseline methods use ResNet-20. Our model is trained with 
a batch size of 256, and an initial learning rate of 0.25 and 0.05 with cosine annealing decay for the 
base session and incremental sessions, respectively. We use SGD with momentum for optimization. 
All baseline methods are reproduced in our experimental environment using the hyperparameters 
reported in their original papers. 

 

5.2. Results 

 

5.2.1. Performance Comparison with Other FSCIL Methods 

 

Our experimental results on CIFAR-100 are presented in Table 1. The results demonstrate that 
our method outperforms other approaches in per-session performance and overall average accuracy. 
Specifically, the overall average accuracy of our method is 1.57 percentage points higher than that 
of the second-best method FACT [18]. For base class accuracy (aAccb), our method achieves the 
highest performance in all sessions except S1, and for incremental class accuracy (aAcci), it yields 
the highest in all sessions except S4. Notably, in sessions S1, S2, and S3, our method outperforms 
the second-best method in aAcci by substantial margins of 15.7, 5.0, and 6.2 percentage points, 
respectively. On average, our method achieves the highest base and incremental class accuracies 
among all methods. Especially, the incremental performance is improved by nearly 4 percentage 
points compared to others. Furthermore, BIG is much lower at 46.89 compared to other methods. 
Maintaining higher base and incremental accuracies while achieving a lower BIG indicates that our 
method mitigates model bias more effectively than existing FSCIL approaches. Appendix A provides 
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a statistical analysis of these performance differences using McNemar tests [44], further supporting 
the significance of our results. 

 

 

Table 1. Comparison of FSCIL methods across multiple sessions on CIFAR-100. S0 represents the base session 
and S1-S8 denote incremental sessions. The best results are bolded. 

 

5.2.2. Visualization of Feature Space 

 

Figures 3-5 visualize the learned representations of our method using UMAP [41] projection to 
map the cluster-level and class-level features into a 2D space. Figure 3 illustrates the results when 
visualizing only the ID classes. Figure 4 shows the feature space when visualizing both ID and OOD 
classes. For visualization, we selected eight classes in total—two classes from each of four different 
clusters—comprising four base classes and four incremental classes, with five samples per class. 
Within this criterion, all samples and class selections were performed randomly. For the OOD classes, 
two classes were randomly selected and five samples per class were randomly drawn. Additionally, 
we compare the feature space of our method with that of TEEN [42], one of the baseline methods, 
and the results are presented in Figure 5. 

ID Classes. Figure 3a shows the cluster-level features of the ID classes. We can observe that the 
features are well grouped according to their respective clusters, and when colored by class, the two 
classes belonging to the same cluster are grouped together. Figure 3b shows the class-level features 
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of the ID classes. Compared to the cluster-level features, the classes that were grouped within the 
same cluster are now more distinctly separated at the class level. 

 

 

 

Figure 3. UMAP visualization of ID feature space. (left) colored by cluster label. (right) colored by class label.  
(a) represents the cluster-level feature space, and (b) represents the class-level feature space. 

 

ID and OOD Classes. Figure 4 shows the ID classes from Figure 3 with two additional randomly 
selected OOD classes. Classes “rose” and “wolf” are the OOD classes. In Figure 4a, the cluster-level 
features remain well-separated by cluster, with classes in the same cluster grouped closely together. 
However, the OOD cluster does not appear distinctly separated from the others. This is likely due to 
the nature of the CIFAR-100 [23] dataset, where the distributions of all classes are relatively similar. 
In Figure 4b, the class-level features demonstrate that features belonging to the same class are well-
clustered together. 
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Figure 4. UMAP visualization of ID and OOD feature space. (left) colored by cluster label, (right) colored by 
class label. (a) represents the cluster-level feature space, and (b) represents the class-level feature space. 

 

Comparison with TEEN. Figure 5 compares the class-level features of our proposed method and 
TEEN [42]. As shown in Figure 5a, the TEEN results exhibit good overall class separation, but 
classes “cattle” and “elephant”, as well as classes “telephone” and “wardrobe”, are distributed close 
to each other in the feature space. In contrast, Figure 5b shows the results of our method, where 
these class pairs are more distinctly separated. Notably, when colored by cluster, classes “cattle” 
and “elephant”, and classes “telephone” and “wardrobe”, each belong to the same cluster. This result 
demonstrates that our hierarchy-based dual-level training method effectively separates semantically 
similar classes that are hard to distinguish. 
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Figure 5. Class-level feature space comparison with TEEN. (a) represents the feature space of TEEN, and (b) 
represents the feature space of our method. (left) class-level visualization, (right) cluster-level visualization. 

 

5.2.3. Evaluation of Base Prototype Clustering 

 

To assess the effectiveness of the base prototype clustering, which serves as the foundation for 
our hierarchical label construction, we conducted both qualitative and quantitative evaluations with 
class names and Rand index [45]. Table 2 presents the clustering results of base prototypes mapped 
to the CIFAR-100 class names. We observe that semantically similar classes are generally grouped 
into the same cluster, indicating that the clustering aligns well with human intuition. Furthermore, 
the Rand index computed with the CIFAR-100 coarse labels achieves a high value of 0.9446. This 
shows strong consistency between our clustering and the dataset’s inherent hierarchical structure. 
These results demonstrate that the constructed hierarchy captures meaningful semantic relationships 
among classes, providing a reliable basis for the subsequent hierarchical training. 
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Cluster ID Class Names 
1 clock 
2 aquarium fish, crab, crocodile, dinosaur, flatfish, lizard, lobster, mushroom 
3 forest, maple tree, mountain, oak tree, palm tree, pine tree 
4 bottle, can, cup, lamp 
5 baby, boy, girl, man 
6 cloud, dolphin 
7 bee, beetle, butterfly, caterpillar, cockroach, orchid 
8 bicycle, lawn mower, motorcycle 
9 fox, hamster, kangaroo, leopard, lion 
10 apple, bowl, orange, pear 
11 bridge, castle, house 
12 bed, chair, couch, keyboard 
13 cattle, elephant 
14 bus, pickup truck 
15 bear, beaver, camel, chimpanzee, mouse, otter 

 

Table 2. Base prototype clustering results mapped with CIFAR-100 class names. 

 

5.2.4. Evaluation of Out-of-Distribution Detection 

 

In this section, we evaluate the effectiveness of neural collapse-based OOD detection (NECO) [40] 
on the incremental classes. Figure 6 presents the ID and OOD class distributions in the last session 
using a kernel density estimation (KDE) [46] plot of the PCA-1D projections of incremental class 
prototypes. The incremental set consists of 40 classes in total, including 32 ID classes and 8 OOD 
classes. The KDE plot shows a noticeable separation between the two distributions, suggesting that 
the ID and OOD classes are well distinguished during the incremental sessions. To further validate 
the clustering results after the final incremental session, we compute the Rand index [45] over all 
100 classes. The overall Rand index achieved a value of 0.8962, showing that the OOD detection 
and prototype clustering maintained decent alignment with the underlying class semantics even with 
the increasing number of classes. Additional qualitative analysis of OOD feature distributions over 
incremental sessions can be found in Appendix B. 
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Figure 6. Kernel density estimation (KDE) plot of ID and OOD prototypes. The visualization is based on the 
PCA-1D projections of prototypes. Both ID and OOD prototypes are all from incremental classes. 

 

 

6. Discussion 

 

Few-shot class-incremental learning (FSCIL) requires a model to continuously adapt to newly 
introduced classes while preserving the knowledge of previously learned ones, which is essential in 
many real-world applications [8-10]. The FSCIL task is composed of a base session that trains the 
backbone with sufficient training data including a large number of classes, and multiple incremental 
sessions where new classes arrive with only a few training samples per class [13]. Such severe class 
imbalance between base and incremental classes diminishes the model’s ability to discriminate new 
classes and biases its performance toward the base classes. 

To address this bias and enhance the model’s adaptability to incremental classes, recent works 
have adopted forward compatible techniques [18-21] that aim to reserve space for future classes by 
learning compact base representations. Among these methods, NC-FSCIL [21] introduces the idea 
of neural collapse to FSCIL [22], and achieves state-of-the-art performance by pre-defining the ETF 
classifier during the base session and aligning the new class features to this fixed classifier. However, 
this method exhibits a critical limitation in class-incremental scenarios. As shown in Figure 1, NC-
FSCIL [21] consistently underperforms when the ETF classifier dimension is either smaller or larger 
than the total number of classes in the dataset, compared to when it matches exactly. This indicates 
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that constructing an ideal feature space using the ETF structure requires prior knowledge of the total 
number of classes, which is unrealistic in FSCIL where new classes continue to emerge over time. 

In this study, we propose a novel Dynamic Hierarchical ETF (DH-ETF) classifier to tackle this 
limitation. Instead of relying on a single, fixed set of ETF prototypes pre-defined in the base session, 
DH-ETF decouples the classifier into two hierarchical levels, each with a distinct role. The “fixed” 
cluster-level ETF classifier retains a stable global semantic structure that captures the relationships 
among classes. In contrast, the “adaptive” class-level ETF classifier is dynamically updated within 
each cluster as new classes arrive, allowing the model to flexibly accommodate the growing number 
of classes. Using the cluster-level ETF as an anchor for preserving previously acquired knowledge, 
this hierarchical design mitigates the representation shift caused by updating the class-level ETFs. 
The effectiveness of our design is supported by the results in Figure 1. As depicted in the figure, our 
method consistently outperforms NC-FSCIL across all ETF dimensions, except when the dimension 
is set to 100—a setting that implicitly assumes prior knowledge of the total number of classes. This 
result empirically validates that our hierarchical and dynamic approach is better suited to the open-
ended nature of incremental learning tasks, where the number of classes is unknown and continues 
to grow incrementally. 

Furthermore, to address the base class bias prevalent in existing FSCIL methods, we leverage 
the semantic similarity among classes to guide the incremental process by ensuring that the newly 
introduced classes are aligned with semantically relevant clusters. This use of class semantics not 
only enhances inter-cluster separability through cluster-level optimization, but also facilitates intra-
cluster separation by enabling fine-grained differentiation of semantically similar few-shot classes 
within each cluster. As a result, our method improves the model’s ability to effectively discriminate 
incremental classes, thereby alleviating the bias toward base classes. 

Experimental results on the CIFAR-100 [23] benchmark dataset demonstrate the effectiveness 
of our approach. As shown in Table 1, it outperforms state-of-the-art FSCIL methods in both base 
and incremental class accuracy and achieves the lowest base-incremental performance gap (BIG). 
Maintaining higher base and incremental class performance while reducing the BIG suggests that 
our method mitigates the base class bias more effectively than existing FSCIL approaches. Feature 
space visualizations in Figures 3-5 further indicate that our method produces semantically consistent 
feature distributions, reflecting the intended hierarchical structure. In Figures 3 and 4, the cluster-
level features are well separated by class groups, and the classes grouped within the same cluster at 
the cluster level are further divided at the class level. This presents that our method ensures both 
inter-class and intra-class separation through its hierarchical structure. 

In addition, Table 2 and Figure 6 highlight the robustness of prototype clustering and out-of-
distribution (OOD) detection mechanisms. As shown in Table 2, the clustering results for base class 
prototypes well aligns with human intuition as semantically similar classes are generally grouped 
into the same cluster. The kernel density estimation (KDE) plot in Figure 6 presents a noticeable 
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separation between the ID and OOD incremental class distributions. These results suggest that our 
method retains meaningful semantic alignment even as new classes are introduced incrementally. 

While our method demonstrates promising results, several limitations remain. First, although 
it achieved high quantitative clustering quality and visually interpretable class clusters, we observed 
occasional feature overlap between classes from different clusters at finer levels of the hierarchy. 
This suggests the need for additional constraints to ensure that intra-cluster discriminability does not 
compromise inter-cluster separation. Second, the performance drop rate between the base session 
and the last session remains noticeable and requires further improvement. Lastly, our experiments 
are conducted on a single benchmark dataset with relatively balanced distributions. Further work 
should validate the effectiveness of our method on datasets with more diverse and challenging 
distributions, as well as in real-world applications, to strengthen its generalizability. 

 

 

7. Conclusion 

 

In this study, we propose a novel Dynamic Hierarchical ETF (DH-ETF) classifier to address 
the challenges of few-shot class-incremental learning (FSCIL), including the strong bias toward base 
classes and impracticality of fixed classifier designs. By decoupling the classifier into a fixed cluster-
level and an adaptive class-level structure, and leveraging semantic hierarchy, our method achieves 
a better balance between stability and adaptability. Experimental results demonstrate that DH-ETF 
not only outperforms state-of-the-art methods for both base and incremental classes but also retains 
semantically meaningful feature representations throughout the incremental process. In addition, 
quantitative and qualitative evaluations of prototype clustering and OOD detection schemes further 
support the efficacy of our design. These findings highlight the potential of integrating hierarchical 
semantics into FSCIL to overcome the limitations of existing methods and pave the way for future 
research in more diverse and challenging real-world scenarios. 
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Appendix A. Statistical Significance Test 

 

To assess whether the performance differences between our method and the baseline methods 
are statistically significant, we conducted the McNemar test [44] at each incremental session. The 
McNemar test compares the discordant pairs between two classifiers by assigning a value of 1 to 
correctly classified samples and 0 to misclassified samples, and determines whether the observed 
difference in learning patterns is statistically significant. Table A.1 summarizes the p-values of the 
McNemar test for each session, comparing our method against TEEN [42], LIMIT [20], and FACT 
[18]. At a significance level of 0.05, most sessions exhibit statistically significant differences in the 
error patterns between our method and each baseline. These results implies that the improvements 
in accuracy achieved by our method is statistically significant compared to the baseline approaches. 

 

 

Table A.1. McNemar test p-values in each incremental session. The test is conducted to statistically compare 
the performance of our method and each baseline method. Statistically significant results at the significance 
level of 0.05 are bolded. 
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Appendix B. Visualization of Feature Distributions Across Sessions 

 

To further analyze the behavior of our model, we visualize the feature distributions of all classes 
in each incremental session using UMAP [41]. Visualizations include base classes, and incremental 
classes identified as in-distribution (ID) and out-of-distribution (OOD). As shown in Figure B.1, the 
proportion of classes detected as OOD remains relatively low across all sessions. Given the large 
size and diversity of the base class set, the majority of incremental classes are identified as ID and 
appropriately assigned to semantically relevant clusters. Additionally, the OOD incremental classes 
(red triangles) consistently form a compact cluster near the origin in the feature space, rather than 
being scattered. This indicates that even with just one dedicated OOD cluster, our model is able to 
maintain appropriate class separation, while preserving meaningful structure within the ID space. 
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Figure B.1. UMAP visualization of feature distributions across sessions. Gray circles represent base classes, 
black triangles indicate in-distribution (ID) incremental classes, and red triangles represent out-of-distribution 
(OOD) incremental classes. 
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Abstract in Korean 

 

동적 특징-분류기 정렬을 통한 소수 샘플 기반 

클래스 증분 학습의 편향 완화 

 

 

소수 샘플 기반 클래스 증분 학습(few-shot class-incremental learning, FSCIL)은 

이전에 학습한 지식을 유지하면서, 소수의 학습 샘플만으로 새로운 클래스를 지속적으로 

학습해야 하는 문제를 다룬다. 이러한 상황에서는 기존 클래스와 새로운 클래스 간의 심한 

불균형으로 인해 모델이 기존 클래스에 편향되고, 새로운 클래스를 효과적으로 받아들이지 

못하는 문제가 발생한다. 최근 연구들은 이를 해결하고자 신경망 훈련의 말기에 나타나는 

신경 붕괴(neural collapse) 현상의 결과물인 등각 균형 프레임(equiangular tight frame, 

ETF)의 기하학적 특성을 활용한다. 그러나, 기존의 ETF 기반 방법론은 base 단계에서 

전체 클래스의 수를 가지고 미리 정의된 고정 분류기를 사용하는데, 이는 새로운 클래스가 

계속해서 추가되는 FSCIL 의 특성에 부합하지 않는다. 본 연구에서는 클래스 간 의미론적 

유사성을 활용하여 확장성과 예측력을 모두 확보하는 동적 계층 ETF 분류기를 제안한다. 

Base 단계 학습 후 base 클래스들의 클래스별 프로토타입을 군집화 하여 계층을 형성하고, 

이를 기반으로 고정된 군집 레벨 ETF 와 동적으로 조정 가능한 클래스 레벨 ETF 로 구성된 

계층적 ETF 분류기를 구축한다. 각 증분 세션에서는 새로운 클래스의 수와 이들의 base 

클래스와의 특징 유사도에 따라 클래스 레벨 ETF 를 업데이트한다. 이러한 구조는 고정된 

군집 레벨 표현을 통해 기존의 지식을 보존하면서도, 클래스 레벨 ETF 의 동적인 조정을 

통해 새로운 클래스에 유연하게 대처하도록 한다. CIFAR-100 데이터셋에 대한 실험 결과, 

제안한 방법은 기존의 최신 방법들보다 우수한 성능을 보이며, 기존 클래스에 대한 치명적 

망각(catastrophic forgetting)을 줄이는 동시에 새로운 클래스의 성능을 향상시킴으로써 

FSCIL 모델의 기존 클래스 편향 현상을 완화한다. 
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