Debiasing Few-Shot Class-Incremental Learning
via Dynamic Feature-Classifier Alignment

Kim, Shiwon

Department of Digital Analytics
Graduate School

Yonsei University

TABLE OF CONTENTS

LIST OF FIGURIES ettt ssossesossesssossessssss 0015001051000 s
LIST OF TABLES ~ reeeeesssessssesstsssessssssssssssssssss s
ABSTRACT IN ENGLISH ~ rremmsesmsssstisssssssisssssssisssssssssssssssssssssssssssssssssssssssosssoes

1 INTRODUGTION woeeessesessssessssssesssssssssssessssssossssss s

1.1. Research Background

1.2. Motivations and Contributions
D RELATED WOREK ettt

3 PRELIMINARIES st ssssssssssessssssssssssssssss s

3.1. Few-Shot Class-Incremental Learning

3.2. Simplex Equiangular Tight Frame
3'3' Dual—LeVel ETF Classiﬁer ...

B, METHOQIDS ettt

4.1. Neural Collapse-Inspired Hierarchical Label Construction

4.1.1. Base Session

4.1.2. Incremental Sessions

4.2. Dynamic Hierarchical Feature-Classifier Alignment

4.2.1. Hierarchical Dot-Regression Loss

4.2.2. Dependency Loss

S EXPERIMENTS e oot
5.1, BXPeriMmental Settings
G0 RESUIES oo

5.2.1. Performance Comparison with Other FSCIL Methods =~ s

S Oy Ol

© ©O© 0

5.2.2. Visualization of Feature Space
5.2.3. Evaluation of Base Prototype Clustering s

5.2.4. Evaluation of Out-of-Distribution Detection =~ e
6. DISCUSSION ettt sttt
T CONCLUSION ottt
APPENDIX A. Statistical Significance Test s
APPENDIX B. Visualization of Feature Distributions Across Sessions

REFERENCES st 0

ABSTRACT IN KOREAN rreeesmssessssssessssesossssesssssssssssss sttt

14
17
18
19
21
22
23
25
28

LIST OF FIGURES

<Figure 1> Performance on CIFAR-100 with ETF dimensions from 60 to 150. 3
<Figure 2> The overall framework of Dynamic Hierarchical ETF (DH-ETF). 8
<Figure 3> UMAP visualization of ID feature space, = 15
<Figure 4> UMAP visualization of ID and OOD feature space. = 16
<Figure 5> Class-level feature space comparison with TEEN, =~ oo 17
<Figure 6> Kernel density estimation (KDE) plot of ID and OOD prototypes. 19

<Figure B.1> UMAP visualization of feature distributions across sessions. =77 23

LIST OF TABLES

<Table 1> Comparison of FSCIL methods across multiple sessions on CIFAR-100.

<Table 2> Base prototype clustering results mapped with CIFAR-100 class names.

<Table A.1> McNemar test p-values in each incremental session.

ABSTRACT

Debiasing Few-Shot Class-Incremental Learning
via Dynamic Feature-Classifier Alignment

Few-shot class-incremental learning (FSCIL) addresses the problem of continuously learning
new classes from only a few training samples, while retaining knowledge of previously learned ones.
In this setting, the severe imbalance between base and incremental classes often leads to a strong
bias toward the base classes and limited adaptability to new classes. To tackle this issue, recent
approaches leverage the geometric properties of the simplex equiangular tight frame (ETF), which
emerges in the terminal phase of deep model training as part of the neural collapse phenomenon.
However, existing ETF-based methods assume a fixed classifier determined at the base session with
a pre-defined number of classes, which is impractical in FSCIL where new classes are continually
added. In this study, we propose a Dynamic Hierarchical ETF (DH-ETF) classifier that incorporates
semantic similarity among classes to achieve both scalability and discriminability. After training on
the base session, we construct a hierarchy map by clustering the base class prototypes and build a
hierarchical ETF classifier composed of a fixed cluster-level ETF and adaptable per-cluster class-
level ETFs. In each incremental session, the class-level ETFs are updated based on the number of
new classes and their similarity to the base classes in the embedding space. This design preserves
prior knowledge through the fixed cluster-level representation while facilitating adaptation to new
classes via the updated class-level ETFs guided by the hierarchy. Experiments on CIFAR-100 show
that our method outperforms existing state-of-the-art approaches, effectively addressing base-class
bias by achieving superior incremental class performance while alleviating catastrophic forgetting.

Key words : Few-shot class-incremental learning, Neural collapse, Equiangular tight frame (ETF)

1. Introduction

1.1. Research Background

Deep neural networks (DNNss) have achieved remarkable success across a range of real-world
domains, often matching or even surpassing human-level performance [1-3]. However, when trained
on data streams, they suffer from catastrophic forgetting [4, 5], which refers to losing previously
acquired knowledge while adapting to evolving data distributions. To tackle this challenge, class-
incremental learning (CIL) has been introduced as a deep learning framework that enables models
to continuously accommodate new classes over time while preserving knowledge from previously
observed ones [6, 7]. While CIL has been widely studied due to its great potential in dynamically
incorporating new classes, it tends to be less effective in scenarios where only a small number of
new samples are available. This type of scenario commonly arises in real-world contexts, such as
diagnosing rare diseases in the medical field [8, 9] or recognizing unseen objects in autonomous
driving [10]. Inspired by such practical constraints, the few-shot class-incremental learning (FSCIL)
paradigm has emerged as a more realistic yet challenging extension of CIL, under the assumption
that new classes are introduced with only a few samples [11, 12]. Specifically, the FSCIL task
consists of a base session that includes a large number of classes with sufficient training samples per
class, followed by multiple incremental sessions where an extremely limited number of samples are
provided [13]. Such imbalance in FSCIL poses a unique challenge beyond catastrophic forgetting,
as the model’s performance tends to be biased toward the base classes.

FSCIL has gained much attention due to its practical importance and challenging nature. Early
approaches primarily focus on maintaining the discriminability of previous classes when training on
new data. These methods are referred to as backward compatible FSCIL [13, 14], which typically
finetune the backbone network with knowledge distillation schemes to reduce the forgetting [11, 15],
or freeze the backbone trained on base classes and update only the projection layer or classifier head
during incremental sessions [16, 17]. However, these methods still suffer from limited adaptability
to newly introduced classes, as the model tends to retain a strong bias toward the base classes and
struggles to effectively incorporate new information. A better solution is to anticipate future updates
in advance when training the early version of a model. Such forward compatibility is regarded a
more desirable property than backward compatibility for FSCIL. Forward compatible approaches
aim to prepare for possible future updates during base session training, by learning a more compact
embedding space for base classes to reserve space for new classes [18-21].

Among forward compatible methods, one notable line of work employs a simplex equiangular
tight frame (ETF) classifier [21], inspired by the recently discovered Neural Collapse phenomenon.

Neural collapse refers to the behavior of deep models at the terminal phase of training, where the
last-layer features of each class collapse into a single vertex aligned with their respective class means
(i.e., prototypes), which together form a simplex ETF [22]. A simplex ETF is a geometric structure
in which all vectors are equiangular, thereby maximizing the pair-wise angles among these vectors.
[21] adopts an ETF classifier in FSCIL to construct a well-structured feature space that facilitates
the seamless addition of new classes. It is designed to reserve balanced space for future classes by
maximizing the inter-class distance while maintaining equal angles between class prototypes.

1.2. Motivations and Contributions

The ETF classifier has emerged as a powerful tool, achieving state-of-the-art performance in
scenarios where training data for certain classes is limited. However, in this study, we focus more
on the practical applicability of the ETF classifier in class-incremental settings. [21] pre-defines an
ideal set of directions for class-wise features using the ETF classifier during the base session, and
subsequently aligns new class features to these directions in later sessions without adjusting the
classifier weights. Even though such strategy proves to be effective in minimizing representation
shifts, this “fixed” classifier design raises a fundamental question: is it appropriate to use a classifier
pre-assigned in the base session when new classes continue to arrive?

Figure 1 illustrates the average accuracy of [21] on CIFAR-100 [23], with the ETF classifier
dimensionality K varying from 60 to 150. When K < 100, the total number of classes eventually
exceeds K, making the classifier unable to predict additional classes beyond K. Therefore, we set
the accuracy of these classes to zero. The model reaches its highest performance when K equals the
total number of classes (i.e., K = 100), while the accuracy drops sharply for K < 100 and gradually
declines for K > 100. These results indicate that FSCIL with a pre-defined ETF classifier is optimal
only when the number of classes in the dataset is specified in advance. However, this assumption is
impractical in class-incremental scenarios, where new classes continuously emerge over time.

A recent study highlights the infeasibility of a fixed ETF classifier in class-incremental settings,
and proposes dynamic neural collapse in the context of online task-free continual learning [24]. In
each incremental phase, the ETF classifier is recomputed based on the old and new class prototypes
to reflect the increased number of classes. While this approach is practical and promising in that it
allows continuous adjustment of the ETF classifier during incremental training, it also introduces a
trade-off: it may exacerbate forgetting of previously observed classes and lead to overfitting to the
newly added classes, which can undermine the overall discriminability between classes.

70

60

50

40

30 1

Average Accuracy (%)

20 A

10
NC-FSCIL
—=- Ours

T T T T T T T T
60 70 80 90 100 110 120 130 140 150
Number of ETF Dimensions

Figure 1. Performance on CIFAR-100 with ETF dimensions from 60 to 150. Varying dimensions are only
applied to NC-FSCIL which requires a fixed ETF classifier.

In this study, we leverage hierarchical information derived from the semantic similarity among
classes to construct a scalable ETF classifier while compensating for the performance degradation
that may arise from updating the classifier weights. The use of hierarchical information to improve
the performance of deep classification models has been extensively studied across various domains,
including medical [25-27] and e-commerce [28, 29] applications. Moreover, it has also demonstrated
its effectiveness in imbalanced learning [30-32] and continual learning [1, 33]. Using a hierarchical
structure allows the classification problem to be addressed in stages—solve a less complex, higher-
level task first, and utilize its resulting information to guide a more fine-grained, lower-level task.
Inspired by this insight, we aim to strike a balance between the scalability and performance of the
ETF classifier by decomposing it into two levels, each assigned with a distinct role. After training
on the base session, we construct a semantic hierarchy map by clustering the prototypes of the base
classes. When a new class arrives, it is assigned to a class cluster based on its semantic similarity to
the cluster centroids, and the hierarchy map is updated accordingly. This hierarchy map is used to
build a dual-level ETF classifier consisting of a cluster-level and a class-level component. The
cluster-level ETF classifier is constructed as a (K+1)-dimensional ETF with an additional out-of-
distribution (OOD) cluster, while the class-level ETF classifier comprises K distinct ETF structures,
each designed to separate the specific classes within its corresponding cluster. During incremental
sessions, we finetune only the dual-level projection layers appended to the backbone, which drive
the last layer features at each level toward their respective target ETF prototypes. The training is
regularized by a dependency term, which guides the model to make predictions consistent with the

hierarchical structure. The cluster-level ETF classifier remains fixed while only the class-level ETF
classifier is recalculated as new classes arrive.

This hierarchy-aware design enhances the distinction between semantically similar few-shot
categories by enabling fine-grained differentiation at the class level within each cluster. It also shifts
the burden of maintaining priorly acquired knowledge to the cluster-level features through a fixed
cluster-level ETF classifier, while continually adapting to newly introduced classes by aligning their
class-level features to the updated class-level ETF classifier. Our proposed Dynamic Hierarchical
ETF (DH-ETF) classifier not only effectively prevents catastrophic forgetting, but also mitigates the
inherent bias of FSCIL by achieving superior incremental class performance compared to other state-
of-the-art methods. The contributions of this paper are summarized as follows:

e We propose a novel Dynamic Hierarchical ETF (DH-ETF) classifier that leverages class-
wise semantic hierarchy to achieve both scalability and discriminability in FSCIL.

e We demonstrate through extensive experiments that our method outperforms other state-
of-the-art methods, addressing the base class bias by achieving superior incremental class
performance while effectively alleviating catastrophic forgetting.

2. Related Work

Few-Shot Class-Incremental Learning (FSCIL). As an extended variant of conventional class-
incremental learning (CIL), FSCIL addresses the challenge of continually adapting to new classes
using only a few samples per class while maintaining previously acquired knowledge. The FSCIL
scenario is first introduced by TOPIC [11], which employs the neural gas (NG) structure to model
the topology between the base and incremental classes. Recent efforts can be broadly categorized
into backward compatible and forward compatible approaches. Backward compatible approaches
primarily focus on preserving the knowledge of previously observed classes, typically by adopting
distillation schemes when finetuning the backbone network [15], or by freezing the backbone and
updating only the classifier [16, 17]. On the other hand, forward compatible FSCIL methods aims
to prepare for possible future class updates during base training. A recent forward compatible work
studies FSCIL from the perspective of the widely discussed neural collapse phenomenon [21]. It
utilizes the simplex equiangular tight frame (ETF) structure to create a stable incremental classifier
for FSCIL. It achieves state-of-the-art performance by fixing the classifier weights to the optimal
symmetric ETF configuration and aligning the features of new classes to this structure. However, it
lacks scalability since its classifier weights are pre-assigned at the initial training stage and frozen

throughout incremental training. In contrast, our method continually updates the ETF classifier to
adapt to the number of new classes in each session. We mitigate the representation shift caused by
adjusting the classifier weights by leveraging class semantics and hierarchy.

Neural Collapse. Neural collapse is a phenomenon observed at the terminal phase of training deep
neural networks for classification tasks, particularly when models are trained to zero training error
using cross-entropy loss and mean-squared error functions [22]. As a result of this phenomenon, the
class-wise means of the last-layer features collapse to an optimal geometric structure known as the
simplex equiangular tight frame (ETF). Recent studies have demonstrated that a simple last-layer
optimization based on the ETF classifier delivers strong generalization performance across different
learning paradigms, including imbalanced learning [34-36], transfer learning [37, 38]. In particular,
it has been adopted in various continual learning scenarios [21, 24, 39], such as class-incremental
learning, domain-incremental learning, and online continual learning. NC-FSCIL [21] extends this
idea to the few-shot class-incremental learning (FSCIL) setting, where only a few samples per class
are available for new classes. It pre-defines an ETF classifier and subsequently aligns the new class
prototypes to this fixed structure. However, due to its reliance on a “fixed” classifier, it is hard to
achieve optimal performance without knowing the total number of classes encountered throughout
the incremental process. In response, DYSON [24] proposes to dynamically recompute the ETF
structure with new class prototypes in the context of online continual learning. A recent approach in
domain-incremental learning (DIL) aligns image features from varying image domains to a fixed
dual-level ETF classifier constructed from the text embeddings of class names [39]. Our method is
inspired by [39], but we dynamically update the hierarchical ETF classifier in a class-incremental
fashion. To the best of our knowledge, we are the first to leverage class semantics in FSCIL from
the neural collapse perspective.

3. Preliminaries

3.1. Few-Shot Class-Incremental Learning

The few-shot class-incremental learning (FSCIL) task aims to adapt a model to a continuously
expanding label space using only a few labeled samples for each newly introduced classes. The task
begins with a base session including ample training data, followed by multiple incremental sessions

where only a limited number of training samples are available. In each session, the model is trained
solely on the data pertinent to that session, with no access to data from previous sessions.

FSCIL trains a model incrementally on a sequence of training datasets {D©, D@, ... D™},

where D® = {(x;, yi)}lz(;)l, D© s the base session, and T is the number of incremental sessions.
The base session D@ contains a large label space and sufficient training images for each class. In
each incremental session D® for ¢ > 0, there are only a few labeled images and we have |D(t)| =
nk, where n is the number of classes and £ is the number of samples per class, known as n-way -
shot. The label space in each session does not overlap with any other session. For evaluation in the
t-th session, the label space of the test dataset consists of all the encountered classes in the previous
and current sessions.

3.2. Simplex Equiangular Tight Frame

A simplex equiangular tight frame (ETF) is a geometric structure formed at the terminal phase
of training, which maximizes the pair-wise angles of all vectors. Specifically, it refers to a matrix
composed of K vectors E = [ey, ..., ex] € R¥*K that satisfies:

K 1.
E= —K_1U(1K—E1K1K)

where U € R%*X is an orthogonal matrix that allows rotation and satisfies UTU = I, I is the
identity matrix, and 1 is an all-ones vector. All column vectors in £ have the same £, norm and
any pair satisfies:

1 ifi=i
eiTej={ 1 ll]
k=g MfiFj

The pair-wise angle — -1 is the maximal equiangular separation of K vectors in RI*K,

3.3. Dual-Level ETF Classifier

The concept of dual-level ETF classifier is first introduced by DualCP [39] in the context of
domain-incremental learning (DIL). In DIL scenarios, image features vary across domains while the

semantic meaning of classes remains invariant. To this end, DualCP leverages the domain-invariant
text embedding space as an anchor. Specifically, it constructs a fixed hierarchical ETF classifier in
the text space, which is assumed to be stable across domains, and aligns the varying image features
from different domains to this anchor space. The text embedding space remains invariant throughout
sessions, enabling consistent alignment even as the image space changes. This facilitates domain-
invariant representation learning by decoupling domain-specific variations from class semantics.

However, applying this approach directly to class-incremental learning (CIL) is suboptimal, as
CIL introduces new classes over time and the text embedding space may not adequately reflect the
evolving class distribution. In CIL, both the image and text feature spaces are subject to change as
new classes are added. Therefore, maintaining a fixed text-based anchor can introduce noise rather
than providing meaningful guidance, and can even exacerbate forgetting in the image space. Instead,
it becomes crucial to construct a hierarchy-aware classifier that dynamically captures the semantic
relationships among newly added classes while preserving meaningful inter-class separability in the
image feature space.

Our method tackles this limitation by dynamically creating a hierarchical ETF classifier based
on the semantics of class prototypes extracted from the image space itself. Unlike DualCP, which
fixes the text embeddings as anchors and aligns the image features to them, we leverage the semantic
hierarchy among the image prototypes to create a more adaptable and meaningful image classifier
that evolves as new classes are added. This design enables the classifier to maintain semantically
consistent representation, while avoiding the risk of noise from misaligned anchors. Furthermore,
when training, we incorporate a dependency loss term to enforce consistency between the cluster-
level and class-level predictions, which explicitly encodes the hierarchical structure in the projection
layers and allows for a more robust feature space.

4. Methods

Figure 2 depicts the overall framework of our proposed Dynamic Hierarchical ETF classifier
(DH-ETF) approach. Our method consists of two main components: (a) Neural Collapse-Inspired
Hierarchical Label Construction, which constructs a hierarchical ETF classifier based on semantic
similarity among classes, and (b) Dynamic Hierarchical Feature-Classifier Alignment, which trains
dual-level projection layers using the updated hierarchical ETF classifier. Section 4.1. describes how
the hierarchical ETF is constructed in the base session, and dynamically updated during incremental
sessions. Section 4.2. presents the hierarchical loss function used to train each projection layer.

(a) Neural Collapse-Inspired Hierarchical Label Construction © Base Class Prototypes

A Incremental Class Prototypes
Base Encoder Base Session (t = 0)
(Trained w/ CE Loss)

Similarity §

L= K clusters L -

So_ Eo€RUXKD)

e S e S BT PN
;. N ;. N 7 .
\ \
H \ H \ QR Decomposition ' .
B ° \ ° \ v
X° — 1o e, — 1 J° e) — 3 | !
' '
\ o ! \ o Yoo)
B: A ’ \ ’ ° ’
ase .] ’ . o , < 7" Reserved Space
Samples o L’ o L ‘,I\ N _~7 (00D Cluster)

Prototypes Py Prototype Clustering Hierarchical ETF Classifier Eq
‘ Incremental Sessions (1 < t < T)

Out-of-Distribution

. Similarity § .
P - S L - ~.
< fa % s LAy
I . ! \ Y \ QR Decomposition (L2
X f b Loa a® | los a® 1 —

! 1

M ° 1 NECO(P)= %‘;}Il \ ° K

Incremental 5 . L w \ 5 /
Samples I‘
Prototypes [Py, ..., Py] Cluster Allocation & OOD Detection

(b) Dynamic Hierarchical Feature-Classifier Alignment

@ Base Prototype Memory

® Incremental Features 4 [s]a]
S, (=[5 L1 DR Loss (£y) o
\ BE b
\ g1 2 <
\ 88 (@@Ea-1) - 3
S ! U1 Classifier By y g
'
! (3 1] g
’ oe L2 DR Loss (£;) 'R 2
92 2 —> <
" <
Bn (@®Ea-1) <-T-> I
Incremental Feature Space L2 Classifier Eq,

Figure 2. The overall framework of Dynamic Hierarchical ETF (DH-ETF).

4.1. Neural Collapse-Inspired Hierarchical Label Construction

This section describes how the hierarchical ETF is initially constructed during the base session
and how it is updated in the incremental sessions. In the base session, we first extract the base class
prototypes using the trained encoder, then construct the cluster-level and class-level ETF classifiers
based on the clustering results of these prototypes. In each incremental session, the class hierarchy
is updated based on the semantic similarity between the prototypes of newly introduced classes and
the existing cluster centroids. The class-level ETF classifier is subsequently updated according to
the revised hierarchy.

4.1.1. Base Session

Prototype Clustering. To extract meaningful features for the base classes, we first train the base
encoder on the base class training data using the cross-entropy (CE) loss. With the trained encoder,
we compute the class-wise means, referred to as prototypes, for each base class. These prototypes
are then used to construct a semantic hierarchy map of the classes through clustering. The clustering
is performed based on a similarity matrix .S, which is computed by calculating the pair-wise cosine
similarities between all base prototypes P,. Classes whose cosine similarity exceeds a predefined
hyperparameter p are grouped into the same class cluster. This process results in K clusters.

Out-of-Distribution Cluster Initialization. To handle incremental classes significantly different
from the existing base classes, we pre-define an out-of-distribution (OOD) cluster to reserve space
for such OOD classes in advance. We first compute the centroids of the K clusters obtained through
prototype clustering € = [c,, ..., Ck], and assign a vector o that is orthogonal to all K centroids as
the centroid of the OOD cluster. The K+1 centroid vectors €' = [C; o] including K in-distribution
(ID) cluster centroids C and a OOD cluster centroid o are used to construct a (K+1)-dimensional
cluster-level ETF classifier.

Hierarchical ETF Construction. We construct the hierarchical ETF classifier using the cluster
centroids €' = [c, ..., C, 0] and base prototypes P,. The ETF structure is derived by performing
QR decomposition on a specific matrix to obtain an orthogonal matrix @ [34]. To build the dual-
level ETF, we perform two separate ETF construction processes. First, we apply QR decomposition
to the matrix of cluster centroids C' = [c,, ..., Cg, 0] to generate the (K+1)-dimensional cluster-level
ETF classifier. For the class-level ETF classifier, we create an ETF structure for each cluster
individually using the prototype matrix of the classes within that cluster, resulting in K distinct class-
level ETFs. Since there are no subclasses assigned to the OOD cluster at this stage, the class-level
ETFs are defined only for the K clusters obtained from prototype clustering.

4.1.2. Incremental Sessions

Out-of-Distribution Cluster Assignment. When new classes arrive during incremental sessions,
we first extract new class prototypes matrix P, and determine whether each class belongs to the in-
distribution (ID) or the out-of-distribution (OOD) set. This step ensures that classes distributions
significantly different from the base classes are assigned to the OOD cluster before the remaining
classes are assigned to the K ID clusters obtained through prototype clustering. For OOD detection,
we adopt the neural collapse-based OOD detection (NECO) [40] technique. The NECO score is

computed as the relative norm of a new class prototype within the principal space spanned by the
base prototypes, normalized by the norm of the new class prototype itself. Given principal space
P € RP*? spanned by the d eigenvectors of the latent space H € RP*?, the NECO score can be
formally described as:

PRy GOIl _ vho()TPPTh, (%)
llhe, GOl Jhy () Thy, ()
where h,, (x) is the feature vector of a certain input image x. If the NECO score falls below a pre-

defined threshold 7, the class is categorized as OOD. The NECO score ranges from 0 to 1. Classes
identified as OOD are then assigned to the OOD cluster as its subclasses.

NECO(x) =

In-Distribution Cluster Assignment. New classes identified as in-distribution (ID) are assigned to
the clusters formed during the base session based on cosine similarity. Specifically, we compute the
cosine similarity between each new class prototype and all K ID cluster centroids € = [cy, ..., ¢k],
and assign each class to the cluster corresponding to the most similar centroid.

Hierarchical ETF Update. The hierarchy is updated based on the cluster assignments of the newly
introduced classes, and the class-level ETF classifier is recalculated accordingly. For clusters with
newly added classes, we recompute the class-level ETF by performing QR decomposition on the
updated prototype matrix of each cluster and deriving the orthogonal matrix Q. The cluster-level
ETF classifier remains fixed, which allows the model to retain the existing hierarchy information
and effectively utilize it in later sessions.

4.2. Dynamic Hierarchical Feature-Classifier Alignment

This section describes how the hierarchical ETF classifier constructed in Section 4.1. is utilized
for incremental training. During training, the base encoder is kept frozen, and only the projection
layers appended to the encoder are updated. The projection layers are organized in a dual-level
structure, consisting of a cluster-level projection layer and a class-level projection layer. Each layer
is trained using the proposed Hierarchical Dot-Regression (HDR) loss, which encourages the feature
representations at each level to align closely with their respective target ETF vectors. The HDR loss
is further regularized by the dependency loss, which enforces predictions to be consistent with the
hierarchical structure. Following a commonly adopted strategy in FSCIL studies [17, 21], we include
base class prototypes P, for training in incremental sessions to reduce catastrophic forgetting.

10

4.2.1. Hierarchical Dot-Regression Loss

To train the dual-level projection layers, we propose the Hierarchical Dot-Regression (HDR)
loss, which aligns the feature representations at each level to the hierarchical ETF classifiers. The
HDR loss consists of two dot-regression (DR) loss terms—one for each level of the hierarchy— and
an additional dependency loss (described in Section 4.2.2.). The DR loss is derived by simplifying
the conventional cross-entropy (CE) loss to eliminate the “push” term [34]. The gradient of CE loss
is composed of a pull term and a push term. The pull term attracts features towards their classifier
prototype of the same class. The push term repulses the features away from the prototypes of other
classes. The DR loss retains only the “pull” component. This design assumes that the optimal class
prototypes are already provided by the ETF classifier, making the push term redundant. Formally,
the DR loss for a normalized feature 4; and its corresponding ETF prototype e,,, is given by:

1
L@ E) = 5 (ey," i = 1)

where E is the ETF classifier matrix and e,,, is the prototype of class y; in E. By focusing solely on
the “pull” gradients, the DR loss effectively aligns the feature representations with the optimal ETF
structure without introducing unnecessary repulsion.

From a dual-level perspective, the cluster-level DR loss £, trains the cluster-level projection
layer g, using the cluster-level ETF classifier E; to encourage inter-cluster separation. Similarly,
the class-level DR loss £, trains the class-level projector g, using the class-level ETF classifier to
enhance intra-cluster separation. Together, these two terms guide the feature representations toward
the respective ETF prototypes at each level of the hierarchy, ensuring both coarse-level and fine-
grained discriminability. The dependency loss £;, enforces the model to produce predictions
consistent with the hierarchical structure. The total loss combines these components as:

Lypr=a-Li+L-L,+1-L)

where a, 8, and A are the hyperparameters controlling the contributions of each term.

4.2.2. Dependency Loss

To enforce consistency between the hierarchical predictions at different levels, we employ the
dependency loss Lj,, which regularizes the model to make predictions that adhere to the hierarchy
defined by prototype clustering. It is designed to penalize cases where the predicted class does not

11

belong to the predicted cluster, ensuring that the class-level prediction remains consistent with the
higher-level cluster assignment. By explicitly incorporating this hierarchical dependency into the
training objective, the model learns to maintain the semantic structure of classes during inference.
Formally, the dependency loss is defined as:

Ly =pPFip,PF2 -1

where p; is a constant penalty factor for level i. The indicator terms D and IP; are defined as:

]D={1 if 9, # 9, .:{1 it 9; #y;
0 ify, =9 0 ify; =y

where §; is the predicted class at level i, and y; is the corresponding ground-truth label. Here, D
activates the penalty if the class-level prediction does not fall within the predicted cluster, and IP;
indicates misclassification at level i. Through this design, the dependency loss enforces the model
to respect the hierarchy, improving consistency in the hierarchical predictions.

5. Experiments

In this section, we evaluate our method on the CIFAR-100 [23] dataset and compare the results
with state-of-the-art FSCIL methods. We also visualize the representation space using UMAP [41]
projection to assess the hierarchical feature-classifier alignment. Finally, we conduct an evaluation
to verify the effectiveness of base prototype clustering and OOD detection.

5.1. Experimental Settings

Dataset. Following previous works in FSCIL, we conduct experiments on CIFAR-100 benchmark
dataset [23] using the data splits in [11]. 60 classes are allocated for base session with 500 training
samples per class. Each of the 8 incremental sessions contains 5 classes with 5 training samples per
class (i.e., a 5-way 5-shot setting).

Evaluation Metrics. Following the popular evaluation protocol of FSCIL [11, 16], we adopt the
average accuracy (aA4cc) as the primary evaluation metric. Unlike prior works that report only the
overall average accuracy, we additionally report the average accuracy on base classes (aAccp) and

12

incremental classes (aAcc:) separately. Furthermore, we propose the base-incremental gap (BIG) as
a new metric to quantify the performance disparity between base and incremental classes. BIG is
designed to measure the degree of base-class bias in the model, computed as the average difference
between base and incremental performance across sessions. Therefore, lower BIG values indicate
better balance. However, since it captures only the raw performance gap, it should be interpreted in
conjunction with the absolute performance of base and incremental classes.

Compared Methods. We compare our results against three baselines: TEEN [42], LIMIT [20], and
FACT [18]. TEEN calibrates new class prototypes in the embedding space based on their semantic
similarity to the base classes. This idea makes it a relevant baseline, as it also leverages inter-class
semantic relationships, sharing the same intuition as our approach. LIMIT and FACT are forward
compatible methods designed to prepare for future updates during the base session.

Implementation Details. All methods are implemented with PyTorch [43]. We use ResNet-12 [3]
as our backbone network, whereas the baseline methods use ResNet-20. Our model is trained with
a batch size of 256, and an initial learning rate of 0.25 and 0.05 with cosine annealing decay for the
base session and incremental sessions, respectively. We use SGD with momentum for optimization.
All baseline methods are reproduced in our experimental environment using the hyperparameters
reported in their original papers.

5.2. Results

5.2.1. Performance Comparison with Other FSCIL Methods

Our experimental results on CIFAR-100 are presented in Table 1. The results demonstrate that
our method outperforms other approaches in per-session performance and overall average accuracy.
Specifically, the overall average accuracy of our method is 1.57 percentage points higher than that
of the second-best method FACT [18]. For base class accuracy (aAdccp), our method achieves the
highest performance in all sessions except S1, and for incremental class accuracy (adcc), it yields
the highest in all sessions except S4. Notably, in sessions S1, S2, and S3, our method outperforms
the second-best method in adcc: by substantial margins of 15.7, 5.0, and 6.2 percentage points,
respectively. On average, our method achieves the highest base and incremental class accuracies
among all methods. Especially, the incremental performance is improved by nearly 4 percentage
points compared to others. Furthermore, BIG is much lower at 46.89 compared to other methods.
Maintaining higher base and incremental accuracies while achieving a lower BIG indicates that our
method mitigates model bias more effectively than existing FSCIL approaches. Appendix A provides

13

a statistical analysis of these performance differences using McNemar tests [44], further supporting
the significance of our results.

Accuracy in each session (%) 1

Methods Base s1 s2 s3 S4 S5 S6 s7 S8 Avg.? BID|

TEEN [42) 78.27 72.02 67.79 63.73 60.69 57.65 55.47 52.87 51.01 62.17 48.76
Base class acc. 78.27 75.50 74.65 73.87 7333 7242 71.52 71.28 70.67 73.50
Incremental class acc. - 30.30 26.60 23.20 275 2220 2337 21.29 21.53 23.89

LIMIT [20] 76.15 7171 67.36 63.19 60.08 57.24 55.12 53.08 50.80 61.64 51.22
Base class acc. 76.15 75.42 74.48 73.65 73.10 72.43 72.18 71.98 71.25 73.40
Incremental class acc. - 27.20 24.60 21.33 21.00 20.76 21.00 20.69 20.13 22.09

FACT [18] 78.32 72.05 68.19 63.91 60.71 57.78 55.63 53.35 51.54 62.39 49.59
Base class ace. 78.32 75.65 75.05 74.20 73.57 72.53 71.82 71.60 70.98 73.75
Incremental class acc. - 28.80 27.00 2.73 2.15 22.36 2327 22,06 2237 23.84

Ours 81.68 72.85 70.44 66.21 61.83 58.75 57.38 54.69 51.83 63.96 46.89

Base class acc. 81.68 75.08 76.85 75.42 75.30 73.75 7438 73.30 70.52 75.14

Incremental class acc. - 46.00 32.00 29.40 21.40 22.76 23.37 22.80 23.80 27.69

Table 1. Comparison of FSCIL methods across multiple sessions on CIFAR-100. S0 represents the base session
and S1-S8 denote incremental sessions. The best results are bolded.

5.2.2. Visualization of Feature Space

Figures 3-5 visualize the learned representations of our method using UMAP [41] projection to
map the cluster-level and class-level features into a 2D space. Figure 3 illustrates the results when
visualizing only the ID classes. Figure 4 shows the feature space when visualizing both ID and OOD
classes. For visualization, we selected eight classes in total—two classes from each of four different
clusters—comprising four base classes and four incremental classes, with five samples per class.
Within this criterion, all samples and class selections were performed randomly. For the OOD classes,
two classes were randomly selected and five samples per class were randomly drawn. Additionally,
we compare the feature space of our method with that of TEEN [42], one of the baseline methods,
and the results are presented in Figure 5.

ID Classes. Figure 3a shows the cluster-level features of the ID classes. We can observe that the
features are well grouped according to their respective clusters, and when colored by class, the two
classes belonging to the same cluster are grouped together. Figure 3b shows the class-level features

14

of the ID classes. Compared to the cluster-level features, the classes that were grouped within the

same cluster are now more distinctly separated at the class level.

(a) o Cluster

‘ D1
D2
D3
D4

Cluster-level UMAP visualization by cluster label.

(b) s Cluster

D1
D2
D3
D4

Class-level UMAP visualization by cluster label.

Cluster-level UMAP visualization by class label.

Class-level UMAP visualization by class label.

Class

* ray

sea
cattle
elephant
wardrobe

* telephone
« orange
* pear

Class

o ray

sea
cattle
elephant
wardrobe

* telephone
« orange
* pear

Figure 3. UMAP visualization of ID feature space. (left) colored by cluster label. (right) colored by class label.

(a) represents the cluster-level feature space, and (b) represents the class-level feature space.

ID and OOD Classes. Figure 4 shows the ID classes from Figure 3 with two additional randomly
selected OOD classes. Classes “rose” and “wolf” are the OOD classes. In Figure 4a, the cluster-level
features remain well-separated by cluster, with classes in the same cluster grouped closely together.
However, the OOD cluster does not appear distinctly separated from the others. This is likely due to
the nature of the CIFAR-100 [23] dataset, where the distributions of all classes are relatively similar.
In Figure 4b, the class-level features demonstrate that features belonging to the same class are well-

clustered together.

15

@) Cluster &> Class
D1 M * ray
D2 sea
D3 cattle
D4 ‘,'.: elephant
00D - wardrobe
telephone
« orange
* pear
* rose
* wolf
Cluster-level UMAP visualization by cluster label. Cluster-level UMAP visualization by class label.
(b) Cluster ¥ 4 Class
D1 * ray
ID2 sea
D3 S cattle
D4 elephant
00D wardrobe
telephone
« orange
* pear
* rose
* wolf
Class-level UMAP visualization by cluster label. Class-level UMAP visualization by class label.

Figure 4. UMAP visualization of ID and OOD feature space. (left) colored by cluster label, (right) colored by
class label. (a) represents the cluster-level feature space, and (b) represents the class-level feature space.

Comparison with TEEN. Figure 5 compares the class-level features of our proposed method and
TEEN [42]. As shown in Figure 5a, the TEEN results exhibit good overall class separation, but
classes “cattle” and “elephant”, as well as classes “telephone” and “wardrobe”, are distributed close
to each other in the feature space. In contrast, Figure 5b shows the results of our method, where
these class pairs are more distinctly separated. Notably, when colored by cluster, classes “cattle”
and “elephant”, and classes “telephone” and “wardrobe”, each belong to the same cluster. This result
demonstrates that our hierarchy-based dual-level training method effectively separates semantically
similar classes that are hard to distinguish.

16

Class ~ Py 3 Class
o ray . ray
sea sea
cattle cattle
elephant elephant
wardrobe wardrobe
o telephone « telephone
 orange « orange
o pear « pear

(b) UMAP visualization of our feature space by class label.

(a) UMAP visualization of TEEN [42] feature space by class label. (Left) Class-level visualization. (Right) Cluster-level visualization.

Figure S. Class-level feature space comparison with TEEN. (a) represents the feature space of TEEN, and (b)
represents the feature space of our method. (left) class-level visualization, (right) cluster-level visualization.

5.2.3. Evaluation of Base Prototype Clustering

To assess the effectiveness of the base prototype clustering, which serves as the foundation for
our hierarchical label construction, we conducted both qualitative and quantitative evaluations with
class names and Rand index [45]. Table 2 presents the clustering results of base prototypes mapped
to the CIFAR-100 class names. We observe that semantically similar classes are generally grouped
into the same cluster, indicating that the clustering aligns well with human intuition. Furthermore,
the Rand index computed with the CIFAR-100 coarse labels achieves a high value of 0.9446. This
shows strong consistency between our clustering and the dataset’s inherent hierarchical structure.
These results demonstrate that the constructed hierarchy captures meaningful semantic relationships
among classes, providing a reliable basis for the subsequent hierarchical training.

17

Cluster ID Class Names
clock

aquarium fish, crab, crocodile, dinosaur, flatfish, lizard, lobster, mushroom

forest, maple tree, mountain, oak tree, palm tree, pine tree

bottle, can, cup, lamp

baby, boy, girl, man
cloud, dolphin
bee, beetle, butterfly, caterpillar, cockroach, orchid

bicycle, lawn mower, motorcycle

O| o || | B|W[N]| —

fox, hamster, kangaroo, leopard, lion

—_
(e

apple, bowl, orange, pear

—_
—

bridge, castle, house

—_
\]

bed, chair, couch, keyboard

—_
9%}

cattle, elephant

—_
N

bus, pickup truck

—_
W

bear, beaver, camel, chimpanzee, mouse, otter

Table 2. Base prototype clustering results mapped with CIFAR-100 class names.

5.2.4. Evaluation of Out-of-Distribution Detection

In this section, we evaluate the effectiveness of neural collapse-based OOD detection (NECO) [40]
on the incremental classes. Figure 6 presents the ID and OOD class distributions in the last session
using a kernel density estimation (KDE) [46] plot of the PCA-1D projections of incremental class
prototypes. The incremental set consists of 40 classes in total, including 32 ID classes and 8 OOD
classes. The KDE plot shows a noticeable separation between the two distributions, suggesting that
the ID and OOD classes are well distinguished during the incremental sessions. To further validate
the clustering results after the final incremental session, we compute the Rand index [45] over all
100 classes. The overall Rand index achieved a value of 0.8962, showing that the OOD detection
and prototype clustering maintained decent alignment with the underlying class semantics even with
the increasing number of classes. Additional qualitative analysis of OOD feature distributions over
incremental sessions can be found in Appendix B.

18

0.14 A 1 1D
00D

-10 -5 0 5 10 15
PCA Value

Figure 6. Kernel density estimation (KDE) plot of ID and OOD prototypes. The visualization is based on the
PCA-1D projections of prototypes. Both ID and OOD prototypes are all from incremental classes.

6. Discussion

Few-shot class-incremental learning (FSCIL) requires a model to continuously adapt to newly
introduced classes while preserving the knowledge of previously learned ones, which is essential in
many real-world applications [8-10]. The FSCIL task is composed of a base session that trains the
backbone with sufficient training data including a large number of classes, and multiple incremental
sessions where new classes arrive with only a few training samples per class [13]. Such severe class
imbalance between base and incremental classes diminishes the model’s ability to discriminate new
classes and biases its performance toward the base classes.

To address this bias and enhance the model’s adaptability to incremental classes, recent works
have adopted forward compatible techniques [18-21] that aim to reserve space for future classes by
learning compact base representations. Among these methods, NC-FSCIL [21] introduces the idea
of neural collapse to FSCIL [22], and achieves state-of-the-art performance by pre-defining the ETF
classifier during the base session and aligning the new class features to this fixed classifier. However,
this method exhibits a critical limitation in class-incremental scenarios. As shown in Figure 1, NC-
FSCIL [21] consistently underperforms when the ETF classifier dimension is either smaller or larger
than the total number of classes in the dataset, compared to when it matches exactly. This indicates

19

that constructing an ideal feature space using the ETF structure requires prior knowledge of the total
number of classes, which is unrealistic in FSCIL where new classes continue to emerge over time.

In this study, we propose a novel Dynamic Hierarchical ETF (DH-ETF) classifier to tackle this
limitation. Instead of relying on a single, fixed set of ETF prototypes pre-defined in the base session,
DH-ETF decouples the classifier into two hierarchical levels, each with a distinct role. The “fixed”
cluster-level ETF classifier retains a stable global semantic structure that captures the relationships
among classes. In contrast, the “adaptive” class-level ETF classifier is dynamically updated within
each cluster as new classes arrive, allowing the model to flexibly accommodate the growing number
of classes. Using the cluster-level ETF as an anchor for preserving previously acquired knowledge,
this hierarchical design mitigates the representation shift caused by updating the class-level ETFs.
The effectiveness of our design is supported by the results in Figure 1. As depicted in the figure, our
method consistently outperforms NC-FSCIL across all ETF dimensions, except when the dimension
is set to 100—a setting that implicitly assumes prior knowledge of the total number of classes. This
result empirically validates that our hierarchical and dynamic approach is better suited to the open-
ended nature of incremental learning tasks, where the number of classes is unknown and continues
to grow incrementally.

Furthermore, to address the base class bias prevalent in existing FSCIL methods, we leverage
the semantic similarity among classes to guide the incremental process by ensuring that the newly
introduced classes are aligned with semantically relevant clusters. This use of class semantics not
only enhances inter-cluster separability through cluster-level optimization, but also facilitates intra-
cluster separation by enabling fine-grained differentiation of semantically similar few-shot classes
within each cluster. As a result, our method improves the model’s ability to effectively discriminate
incremental classes, thereby alleviating the bias toward base classes.

Experimental results on the CIFAR-100 [23] benchmark dataset demonstrate the effectiveness
of our approach. As shown in Table 1, it outperforms state-of-the-art FSCIL methods in both base
and incremental class accuracy and achieves the lowest base-incremental performance gap (BIG).
Maintaining higher base and incremental class performance while reducing the BIG suggests that
our method mitigates the base class bias more effectively than existing FSCIL approaches. Feature
space visualizations in Figures 3-5 further indicate that our method produces semantically consistent
feature distributions, reflecting the intended hierarchical structure. In Figures 3 and 4, the cluster-
level features are well separated by class groups, and the classes grouped within the same cluster at
the cluster level are further divided at the class level. This presents that our method ensures both
inter-class and intra-class separation through its hierarchical structure.

In addition, Table 2 and Figure 6 highlight the robustness of prototype clustering and out-of-
distribution (OOD) detection mechanisms. As shown in Table 2, the clustering results for base class
prototypes well aligns with human intuition as semantically similar classes are generally grouped
into the same cluster. The kernel density estimation (KDE) plot in Figure 6 presents a noticeable

20

separation between the ID and OOD incremental class distributions. These results suggest that our
method retains meaningful semantic alignment even as new classes are introduced incrementally.

While our method demonstrates promising results, several limitations remain. First, although
it achieved high quantitative clustering quality and visually interpretable class clusters, we observed
occasional feature overlap between classes from different clusters at finer levels of the hierarchy.
This suggests the need for additional constraints to ensure that intra-cluster discriminability does not
compromise inter-cluster separation. Second, the performance drop rate between the base session
and the last session remains noticeable and requires further improvement. Lastly, our experiments
are conducted on a single benchmark dataset with relatively balanced distributions. Further work
should validate the effectiveness of our method on datasets with more diverse and challenging
distributions, as well as in real-world applications, to strengthen its generalizability.

7. Conclusion

In this study, we propose a novel Dynamic Hierarchical ETF (DH-ETF) classifier to address
the challenges of few-shot class-incremental learning (FSCIL), including the strong bias toward base
classes and impracticality of fixed classifier designs. By decoupling the classifier into a fixed cluster-
level and an adaptive class-level structure, and leveraging semantic hierarchy, our method achieves
a better balance between stability and adaptability. Experimental results demonstrate that DH-ETF
not only outperforms state-of-the-art methods for both base and incremental classes but also retains
semantically meaningful feature representations throughout the incremental process. In addition,
quantitative and qualitative evaluations of prototype clustering and OOD detection schemes further
support the efficacy of our design. These findings highlight the potential of integrating hierarchical
semantics into FSCIL to overcome the limitations of existing methods and pave the way for future
research in more diverse and challenging real-world scenarios.

21

Appendix A. Statistical Significance Test

To assess whether the performance differences between our method and the baseline methods
are statistically significant, we conducted the McNemar test [44] at each incremental session. The
McNemar test compares the discordant pairs between two classifiers by assigning a value of 1 to
correctly classified samples and 0 to misclassified samples, and determines whether the observed
difference in learning patterns is statistically significant. Table A.1 summarizes the p-values of the
McNemar test for each session, comparing our method against TEEN [42], LIMIT [20], and FACT
[18]. At a significance level of 0.05, most sessions exhibit statistically significant differences in the
error patterns between our method and each baseline. These results implies that the improvements
in accuracy achieved by our method is statistically significant compared to the baseline approaches.

McNemar Test p-values in each session (significance level = 0.05)

Methods S1 S2 S3 S4 S5 S6 S7 S8
vs. TEEN [42] 0.0259 0.2012 0.0259 0.0890 0.0001 0.3268 0.0001 0.1374
vs. LIMIT [20] 0.0093 0.2012 0.0062 0.0311 0.0001 0.0543 0.0001 0.0148
vs. FACT [18] 0.0008 0.0209 0.0013 0.0071 0.0001 0.1356 0.0001 0.0543

Table A.1. McNemar test p-values in each incremental session. The test is conducted to statistically compare
the performance of our method and each baseline method. Statistically significant results at the significance
level of 0.05 are bolded.

22

Appendix B. Visualization of Feature Distributions Across Sessions

To further analyze the behavior of our model, we visualize the feature distributions of all classes
in each incremental session using UMAP [41]. Visualizations include base classes, and incremental
classes identified as in-distribution (ID) and out-of-distribution (OOD). As shown in Figure B.1, the
proportion of classes detected as OOD remains relatively low across all sessions. Given the large
size and diversity of the base class set, the majority of incremental classes are identified as ID and
appropriately assigned to semantically relevant clusters. Additionally, the OOD incremental classes
(red triangles) consistently form a compact cluster near the origin in the feature space, rather than
being scattered. This indicates that even with just one dedicated OOD cluster, our model is able to
maintain appropriate class separation, while preserving meaningful structure within the ID space.

* Base Classes
4 Incremental Classes (D)
+ Incremental Classes (O0D)

Y
(=

© Base Classes
4 Incremental Classes (ID)
s+ Incremental Classes (OOD)

Session 1

Session 2

o

 Base Classes
4+ Incremental Classes (ID)
4+ Incremental Classes (O0D)

w fiaga
S

* Base Classes
4 Incremental Classes (ID)
4+ Incremental Classes (O0D)

Session 3

Session 4

23

Base Classes

Incremental Classes (ID)
Incremental Classes (0OD)

* 4+ Incremental Classes (OOD)
) N
.)
-
s
“ .
. - N .
-t
- 3 N
N -
. N
. .
Session 5

* Base Classes
4 Incremental Classes (ID)

Session 6
. * BaseClasses © Base Classes
& Incremental Classes (D) 4 Incremental Classes (ID)
. + Incremental Classes (OOD) N s Incremental Classes (OOD)
. i 2
. .
o &
RN N
e .‘% R
. “t,
o . N
R s
. N . s
. ‘é‘
* W a -
. .‘h . L4
¢
»
Session 7 Session 8

Figure B.1. UMAP visualization of feature distributions across sessions. Gray circles represent base classes,

black triangles indicate in-distribution (ID) incremental classes, and red triangles represent out-of-distribution
(OOD) incremental classes.

24

References

(1]

(2]
(3]

(4]
(5]
(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

B. K. Jang et al., "Classification models for arthropathy grades of multiple joints based on
hierarchical continual learning," (in English), Radiol Med, vol. 130, no. 6, pp. 782-794, Jun
2025, doi: 10.1007/s11547-025-01974-4.

J. Jumper et al., "Highly accurate protein structure prediction with AlphaFold," (in English),
Nature, vol. 596, no. 7873, pp. 583-+, Aug 26 2021, doi: 10.1038/s41586-021-03819-2.
K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp.
770-778.

R. M. French, "Catastrophic forgetting in connectionist networks," Trends in cognitive
sciences, vol. 3, no. 4, pp. 128-135, 1999.

G. M. Van de Ven, T. Tuytelaars, and A. S. Tolias, "Three types of incremental learning,"
Nature Machine Intelligence, vol. 4, no. 12, pp. 1185-1197, 2022.

S. Yan, J. Xie, and X. He, "Der: Dynamically expandable representation for class
incremental learning," in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2021, pp. 3014-3023.

D.-W. Zhou, Q.-W. Wang, Z.-H. Qi, H.-J. Ye, D.-C. Zhan, and Z. Liu, "Class-incremental
learning: A survey," IEEE Transactions on Pattern Analysis and Machine Intelligence,
2024.

M. Sirshar, T. Hassan, M. U. Akram, and S. A. Khan, "An incremental learning approach
to automatically recognize pulmonary diseases from the multi-vendor chest radiographs,"
Computers in Biology and Medicine, vol. 134, p. 104435, 2021.

L. Sun, M. Zhang, B. Wang, and P. Tiwari, "Few-shot class-incremental learning for
medical time series classification," IEEE Journal of Biomedical and Health Informatics,
vol. 28, no. 4, pp. 1872-1882, 2023.

J. M. Pierre, "Incremental lifelong deep learning for autonomous vehicles," in 2018 21st
international conference on intelligent transportation systems (ITSC), 2018: IEEE, pp.
3949-3954.

X. Tao, X. Hong, X. Chang, S. Dong, X. Wei, and Y. Gong, "Few-shot class-incremental
learning," in Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2020, pp. 12183-12192.

J. Zhang, L. Liu, O. Silvén, M. Pietikdinen, and D. Hu, "Few-Shot Class-Incremental
Learning for Classification and Object Detection: A Survey," IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2025.

S. Tian, L. Li, W. Li, H. Ran, X. Ning, and P. Tiwari, "A survey on few-shot class-
incremental learning," Neural Networks, vol. 169, pp. 307-324, 2024.

Y. Shen, Y. Xiong, W. Xia, and S. Soatto, "Towards backward-compatible representation
learning," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 6368-6377.

S. Dong, X. Hong, X. Tao, X. Chang, X. Wei, and Y. Gong, "Few-shot class-incremental
learning via relation knowledge distillation," in Proceedings of the AAAI Conference on
Artificial Intelligence, 2021, vol. 35, no. 2, pp. 1255-1263.

C. Zhang, N. Song, G. Lin, Y. Zheng, P. Pan, and Y. Xu, "Few-shot incremental learning
with continually evolved classifiers," in Proceedings of the IEEE/CVF conference on

25

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

computer vision and pattern recognition, 2021, pp. 12455-12464.

M. Hersche, G. Karunaratne, G. Cherubini, L. Benini, A. Sebastian, and A. Rahimi,
"Constrained few-shot class-incremental learning," in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2022, pp. 9057-9067.

D.-W. Zhou, F.-Y. Wang, H.-J. Ye, L. Ma, S. Pu, and D.-C. Zhan, "Forward compatible few-
shot class-incremental learning," in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2022, pp. 9046-9056.

C. Peng, K. Zhao, T. Wang, M. Li, and B. C. Lovell, "Few-shot class-incremental learning
from an open-set perspective," in European Conference on Computer Vision, 2022:
Springer, pp. 382-397.

D.-W. Zhou, H.-J. Ye, L. Ma, D. Xie, S. Pu, and D.-C. Zhan, "Few-shot class-incremental
learning by sampling multi-phase tasks," IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 45, no. 11, pp. 12816-12831, 2022.

Y. Yang, H. Yuan, X. Li, Z. Lin, P. Torr, and D. Tao, "Neural collapse inspired feature-
classifier alignment for few-shot class incremental learning," arXiv preprint
arXiv:2302.03004, 2023.

V. Papyan, X. Han, and D. L. Donoho, "Prevalence of neural collapse during the terminal
phase of deep learning training," Proceedings of the National Academy of Sciences, vol.
117, no. 40, pp. 24652-24663, 2020.

A. Krizhevsky and G. Hinton, "Learning multiple layers of features from tiny images,"
20009.

Y. He, Y. Chen, Y. Jin, S. Dong, X. Wei, and Y. Gong, "Dyson: Dynamic feature space self-
organization for online task-free class incremental learning," in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp. 23741-
23751.

G. An, M. Akiba, K. Omodaka, T. Nakazawa, and H. Yokota, "Hierarchical deep learning
models using transfer learning for disease detection and classification based on small
number of medical images," Scientific reports, vol. 11, no. 1, p. 4250, 2021.

I. Dimitrovski, D. Kocev, S. Loskovska, and S. DzZeroski, "Hierarchical annotation of
medical images," Pattern Recognition, vol. 44, no. 10-11, pp. 2436-2449, 2011.

K. Kowsari et al., "Hmic: Hierarchical medical image classification, a deep learning
approach," Information, vol. 11, no. 6, p. 318, 2020.

L. Zhu et al., "Hcldqc: Incorporating hierarchical category structures into contrastive
learning for e-commerce query classification," in Proceedings of the 32nd ACM
International Conference on Information and Knowledge Management, 2023, pp. 3647-
3656.

H. Cotacallapa, N. Saboya, P. C. Rodrigues, R. Salas, and J. L. Loépez-Gonzales, "A flat-
hierarchical approach based on machine learning model for e-commerce product
classification," IEEE Access, 2024.

M. Bader-El-Den, E. Teitei, and M. Adda, "Hierarchical classification for dealing with the
Class imbalance problem," in 2016 International Joint Conference on Neural Networks
(IJCNN), 2016: 1IEEE, pp. 3584-3591.

R. M. Pereira, Y. M. Costa, and C. N. Silla Jr, "Toward hierarchical classification of
imbalanced data using random resampling algorithms," Information Sciences, vol. 578, pp.
344-363, 2021.

H. Xiong and A. Yao, "Deep imbalanced regression via hierarchical classification
adjustment," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

26

[33]

[34]

[35]

[36]

[37]
[38]

[39]

[40]
[41]

[42]

[43]
[44]
[45]

[46]

Recognition, 2024, pp. 23721-23730.

B. H. Lee, O. Jung, J. Choi, and S. Y. Chun, "Online continual learning on hierarchical
label expansion," in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2023, pp. 11761-11770.

Y. Yang, S. Chen, X. Li, L. Xie, Z. Lin, and D. Tao, "Inducing neural collapse in imbalanced
learning: Do we really need a learnable classifier at the end of deep neural network?,"
Advances in neural information processing systems, vol. 35, pp. 37991-38002, 2022.

L. Xie, Y. Yang, D. Cai, and X. He, "Neural collapse inspired attraction—repulsion-balanced
loss for imbalanced learning," Neurocomputing, vol. 527, pp. 60-70, 2023.

C. Thrampoulidis, G. R. Kini, V. Vakilian, and T. Behnia, "Imbalance trouble: Revisiting
neural-collapse geometry," Advances in Neural Information Processing Systems, vol. 35,
pp. 27225-27238, 2022.

T. Galanti, A. Gyorgy, and M. Hutter, "On the role of neural collapse in transfer learning,"
arXiv preprint arXiv:2112.15121, 2021.

L. Xiao et al., "Principled and efficient transfer learning of deep models via neural
collapse," Transactions on Machine Learning Research, 2024.

Q. Wang et al., "Dualcp: Rehearsal-free domain-incremental learning via dual-level
concept prototype," in Proceedings of the AAAI Conference on Artificial Intelligence, 2025,
vol. 39, no. 20, pp. 21198-21206.

M. B. Ammar, N. Belkhir, S. Popescu, A. Manzanera, and G. Franchi, "Neco: Neural
collapse based out-of-distribution detection," arXiv preprint arXiv:2310.06823, 2023.

L. Mclnnes, J. Healy, and J. Melville, "Umap: Uniform manifold approximation and
projection for dimension reduction," arXiv preprint arXiv:1802.03426, 2018.

Q.-W. Wang, D.-W. Zhou, Y.-K. Zhang, D.-C. Zhan, and H.-J. Ye, "Few-shot class-
incremental learning via training-free prototype calibration," Advances in Neural
Information Processing Systems, vol. 36, pp. 15060-15076, 2023.

A. Paszke et al., "Pytorch: An imperative style, high-performance deep learning library,"
Advances in neural information processing systems, vol. 32, 2019.

M. Q. Pembury Smith and G. D. Ruxton, "Effective use of the McNemar test," Behavioral
Ecology and Sociobiology, vol. 74, no. 11, p. 133, 2020.

W. M. Rand, "Objective criteria for the evaluation of clustering methods," Journal of the
American Statistical association, vol. 66, no. 336, pp. 846-850, 1971.

S. Weglarczyk, "Kernel density estimation and its application," in ITM web of conferences,

2018, vol. 23: EDP Sciences, p. 00037.

27

Abstract in Korean

55 54-2 7]

g AZ 7 F A~ 8 5 (few—shot class—incremental learning, FSCIL)&
ol Aol 3t53k A AS FAISIHA, A T METoR R FHLE ASHOE
grFalof sk A E thET ol g Aol A= V& St AR Sl e A
Ev POz e Bdlo] 7|&E FEfj ol AYGH I, AMER FUHAE G S E JrolEo]A
Sobe A B gt T ATES ol st} AE W T Wl YEhE
A17d -3 (neural collapse) &2l 23E2 572 #8 Zd A(equiangular tight frame,

ETF)¢] 718t8td EAS g3t} a8, 7129 ETF 7|9 28 base WA ol A
AA Ze 29 & 7HA 2 v|g] Hojd 1A %%’- | & AH&3t=d, ol =S S8 27}
A&l A F715 = FSCIL o] 54d §-3ahA] eFeth & AFeA e S8 2 1 on| &4
AV S &8ete] g 58S BT g1k 54 AS ETF £/7715 Akttt
Base @/ &5 % base F A5 Y2 LR EE]S 3} slo] AFS A5t
olE 7|Wto R uAE] M ETE ¢ $4 082 24 7hsdh Zd 2w ETF = 744
ASH ETF 27715 F+F3h 2 S8 Ao s A28 Fal2=9] 59 o] &2 base
A =ote] 54 fA] wet & dE ETF & ddlolEdtt), o] 3t 2= 1A E
T 1 2SSl 7Y A AS BRESHA L, SH 2 9 ETF 9 s34 248
S8l A2 ZEf el s th A sHE S gt} CIFAR-100 d| o] Ej Aol gk A3 A3,
Atk W& 7]E9] HA W ERT 73 A5 S Holn, 7]E FE 2o g A1
7} (catastrophic forgetting)& Eo]E TA|o] A2 S 29 ASES AT OEN
FSCIL 22| 7|& S~ J d4-S gsfstt.

l‘N
o

il

B e D ar AE w24

ol\
Mo
£
bty

28

