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Abstract

Class-incremental learning (CIL) aims to adapt to continu-
ously emerging new classes while preserving knowledge of
previously learned ones. Few-shot class-incremental learn-
ing (FSCIL) presents a greater challenge that requires the
model to learn new classes from only a limited number of
samples per class. While incremental learning typically as-
sumes restricted access to past data, it often remains avail-
able in many real-world scenarios. This raises a practical
question: should one retrain the model on the full dataset
(i.e., joint training), or continue updating it solely with new
data? In CIL, joint training is considered an ideal bench-
mark that provides a reference for evaluating the trade-offs
between performance and computational cost. However, in
FSCIL, joint training becomes less reliable due to severe
imbalance between base and incremental classes. This re-
sults in the absence of a practical baseline, making it un-
clear which strategy is preferable for practitioners. To this
end, we revisit joint training in the context of FSCIL by in-
corporating imbalance mitigation techniques, and suggest
a new imbalance-aware joint training benchmark for FS-
CIL. We then conduct extensive comparisons between this
benchmark and FSCIL methods to analyze which approach
is most suitable when prior data is accessible. Our analysis
offers realistic insights and guidance for selecting training
strategies in real-world FSCIL scenarios. Code is available
at: https://github.com/shiwonkim/Joint_FSCIL

1. Introduction

Deep neural networks (DNNs) have achieved remarkable
progress in various fields, often matching or even surpass-
ing human capabilities [13, 20, 22]. However, when trained
on streaming data, they face the challenge of catastrophic
forgetting (CF) [15, 45], which refers to the loss of previ-
ously acquired knowledge when adapting to evolving data

*“Equal contribution.
Corresponding author.

9 o
opg
° A a A
A A A A
o:.‘ o EAQA i 2N = °
8 AMa ©a A A @ A
My A a a, © noe
A,
o s A m AAp
An R ° N M o
o, m A & ° % a0
:s mp 8% = A e TR
° A ® 5 ° Lo O A‘ B a
N % “\ 0% o b SN o ©
48 " ge "% o
“ma °® y %

(a) Joint training in CIL setting (b) Joint training in FSCIL setting

Figure 1. Feature space visualization of a joint training model on
randomly selected 5 base classes (dots) and 5 incremental classes
(triangles) from the CIFAR-100 [28] test set. Class centroids are
shown as squares. (a) Joint training in CIL obtains well-clustered
features. (b) Joint training in FSCIL results in scattered features.

distributions. They also struggle with poor inter-task class
separation (ICS) [26, 31], which leads to ambiguous deci-
sion boundaries between previously learned and newly in-
troduced classes. To tackle these issues, class-incremental
learning (CIL) has been proposed as a framework that en-
ables models to accommodate new classes over time while
maintaining strong performance on all previously observed
classes [50, 62]. In this study, we focus on a more prac-
tical yet challenging extension of conventional CIL, few-
shot class-incremental learning (FSCIL), where new classes
emerge with only a few samples [41, 56]. Specifically, the
FSCIL task consists of a base session with sufficient train-
ing data, followed by multiple incremental sessions where
an extremely limited number of samples are provided [42].

Numerous FSCIL approaches have been proposed to ad-
dress this challenge under the assumption that previously
seen data are no longer accessible in the following incre-
mental sessions [25, 48, 60]. However, in many real-world
scenarios such as e-commerce applications or industrial de-
ployments, previously collected datasets often remain avail-
able [10, 34]—albeit possibly large in size or costly to re-
train on. This raises a fundamental question: If access to
previous data is allowed, is it better to retrain a model us-
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Figure 2. Comparison of confusion matrices on the incremental
classes (60-99) of CIFAR-100 [28] test set between standard joint
training in (a) CIL setting, (b) FSCIL setting, and (c) imbalance-
aware joint training in FSCIL setting. (c) exhibits significantly less
false positives for incremental classes than (b).

ing all accumulated data (i.e., joint training), or to update
the model solely based on the newly introduced data?

The answer to this question is relatively clear in the con-
text of conventional CIL. Given that each incremental ses-
sion contains a substantial amount of data, joint training is
widely regarded as the ideal upper bound [31, 62]. It serves
not only as a comparative baseline for evaluating the perfor-
mance of CIL methods [29, 44, 45], but also as a method-
ological benchmark that many CIL algorithms try to emu-
late [62]. For instance, several studies seek to reduce the
inductive bias in CIL models by rectifying their classifier
weights [1, 19, 58], output logits [3, 8, 49], or feature em-
beddings [53, 60] to align with those of the joint training
model. The existence of a well-defined upper bound pro-
vides a practical guideline: when access to previous data is
permitted, joint training is preferred for maximizing perfor-
mance, whereas CIL methods are viable alternatives under
constraints in training time or computational resources.

In contrast to conventional CIL, the severe imbalance be-
tween base and incremental classes in FSCIL undermines
the effectiveness of joint training as a reliable upper bound.
Figure 1 depicts the feature space of a ResNet-20 [17] joint
training model under both CIL and FSCIL settings using
t-SNE [46] and Voronoi diagram [2]. In CIL, incremental
class features (triangles) are well separated along decision
boundaries (Figure 1a). However, in FSCIL, they are scat-
tered and overlapped, failing to form distinct class regions
(Figure 1b). The confusion matrices in Figures 2a and 2b
further show that joint training in FSCIL produces notably

more false positives for incremental classes than in CIL.

Since joint training proves to be less effective in FSCIL
scenarios, it remains unclear whether retraining on the full
dataset or incremental learning is preferable. Nevertheless,
to the best of our knowledge, no prior work has empirically
investigated how to effectively leverage past data in FSCIL
settings when it is available.

In this paper, we explore imbalanced learning methods
as a more realistic joint training benchmark for comparison
with FSCIL approaches that do not utilize previous data.
Imbalanced learning aims to enhance the representativeness
of minority classes, ensuring their contribution to the learn-
ing process despite their limited sample size [9, 21, 38].
This objective closely aligns with the fundamental assump-
tion of FSCIL, which involves an imbalanced distribution
between base and incremental classes [42, 56].

We categorize eight state-of-the-art imbalanced learning
techniques into three taxonomies—resampling-based [12,
16, 33], reweighting-based [7, 11, 35, 51], and optimizer-
based [63]—and perform a random search [4, 30] to identify
the optimal combination. We present this combination as a
new imbalance-aware joint training benchmark for FSCIL.
Figure 2c demonstrates the effectiveness of the new bench-
mark in improving the model’s ICS. As shown in the con-
fusion matrix, it significantly reduces false positives for in-
cremental classes. This suggests that imbalance-aware joint
training offers a more practical and informative reference
than conventional joint training for evaluating different ap-
proaches in the FSCIL setting.

Based on this insight, we compare its performance with
eight state-of-the-art FSCIL methods to provide guidelines
for selecting suitable training strategies in few-shot incre-
mental scenarios under varying resource constraints. To en-
sure fair and consistent comparison, all methods are reim-
plemented and integrated into a unified framework instead
of relying on disparate codebases. Our framework is made
public to support reproducibility and provide a transparent
pipeline for future FSCIL research.

Our contributions are three-fold:

* First, we initiate a practical discussion on the use of pre-
viously observed data in FSCIL. To the best of our knowl-
edge, this is the first empirical study to examine whether
retraining or incremental learning is preferable when ac-
cess to prior data is available in FSCIL settings.

* Second, we investigate the effectiveness of joint training
with imbalanced learning strategies in FSCIL scenarios.
This serves as a more realistic joint training benchmark
for FSCIL that reflects the class imbalance.

* Third, we conduct a comparative analysis of imbalance-
aware joint training and state-of-the-art FSCIL methods
under varying resource constraints. Our evaluation offers
empirical insights into which training strategy is more ef-
fective under such conditions.



2. Related Work

2.1. Few-Shot Class-Incremental Learning

Few-shot class-incremental learning (FSCIL) addresses the
challenge of continually adapting to new classes using only
a few samples per class while preserving knowledge of pre-
viously learned classes [41]. Recent efforts in FSCIL can be
broadly categorized into i) incremental-frozen, and ii) fine-
tuning approaches [36]. Incremental-frozen approaches
keep the feature extractor fixed during incremental learn-
ing, thereby maintaining a stable embedding space for base
classes even as novel classes are introduced. While this ap-
proach consolidates stability—the ability to maintain previ-
ous knowledge—it can limit plasticity—the ability to learn
new patterns—thus motivating the use of various techniques
to mitigate this trade-off [39, 40, 48, 52, 55, 60, 61]. Fine-
tuning approaches, on the other hand, update the parame-
ters of the feature extractor partially or entirely in each in-
cremental session, which enhances plasticity at the potential
cost of reduced stability [23-25, 59].

In many real-world applications, previous training data
often remain accessible even as new data are continuously
introduced. However, such scenario has not been consid-
ered in existing FSCIL research. This leads to a lack of dis-
cussion on proper benchmarks for determining which meth-
ods are suitable when prior data is available. In this paper,
we explore a new benchmark based on imbalanced learn-
ing techniques and compare it against conventional FSCIL
methods, providing concrete guidelines for scenarios where
past data can be leveraged.

2.2. Imbalanced Learning

Imbalanced learning primarily addresses long-tailed distri-
butions [9], where majority classes significantly outnum-
ber minority classes [57]. Extensive studies have explored
strategies to mitigate the resulting model bias, which are
commonly categorized into three major approaches: i) re-
sampling the training dataset, ii) reweighting the objective
function, and iii) refining the optimizer. Resampling-based
approaches include techniques such as CMO [33], which
employs a CutMix-based augmentation [54] to blend sam-
ples from majority and minority classes; DeepSMOTE [12]
which applies GAN-based generation of minority samples;
and Ghosh et al. [16], which ensure balanced sampling in
each training batch. Reweighting-based approaches aim
to rebalance gradient signals between majority and minority
classes [7, 11, 35, 51]. Optimizer-based approaches miti-
gate class imbalance by modifying the optimizer. For exam-
ple, InbSAM [63] extends Sharpness-Aware Minimization
(SAM) [14] by incorporating class-aware weight updates,
enhancing generalization under skewed distributions.
Although these methods are mostly developed for long-
tailed datasets, they are not limited to such distributions.

Various studies have explored imbalanced learning under
different distributional variations. For example, LDAM [7]
defines an imbalance ratio and controls the number of sam-
ples between major and minor classes accordingly. Buda et
al. [6] introduce step and linear imbalance settings, where
the number of samples per class decreases linearly. They
also consider extreme cases where all classes except one
have very few samples.

These variations suggest that imbalanced learning hold
potential relevance for the FSCIL problem. In this work, we
aim to establish a more realistic benchmark for FSCIL that
complements the conventional joint training benchmark, by
systematically applying and comparing imbalanced learn-
ing methods in the FSCIL setting.

3. Rethinking Joint Training in FSCIL

To provide a practical and informative guideline for the FS-
CIL community—particularly in scenarios where access to
past data is available—we take a step further by rethinking
what constitutes a meaningful benchmark for FSCIL. From
our findings in Figures | and 2, we observe that joint train-
ing alone cannot serve as a proper benchmark for FSCIL, as
it fails to address the inter-task class separation (ICS) prob-
lem under severe class imbalance.

To this end, we further explore class imbalance mitiga-
tion strategies to establish a more appropriate joint training
benchmark for FSCIL, and investigate whether such an ap-
proach can serve as a viable standard. We refer to conven-
tional joint training—the baseline method without any mod-
ifications—as standard joint training throughout this paper,
to clearly distinguish it from joint training schemes with im-
balance mitigation techniques discussed in Section 3.1.

3.1. Imbalance-Aware Joint Training in FSCIL

A fundamental challenge in FSCIL lies in the severe class
imbalance between base and incremental classes. Since in-
cremental classes are introduced with only a few samples,
the model tends to be biased toward well-represented base
classes, resulting in performance degradation. This closely
resembles the problem of imbalanced learning, which aims
to adjust models to learn meaningful representations for un-
derrepresented classes [9, 21, 38].

Motivated by such conceptual similarity, we systemati-
cally explore imbalanced learning techniques to develop a
reliable joint training benchmark for FSCIL. We first exam-
ine how prior studies have addressed class imbalance, and
find that many existing works recommend combining inde-
pendently functioning strategies from different categories
of imbalanced learning, such as i) resampling, ii) reweight-
ing, and iii) optimizer-based methods. For instance, Park et
al. [33] highlight that combining resampling and reweight-
ing techniques leads to significant improvements in the per-
formance of minority classes. In addition, Zhou et al. [63]
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Figure 3. Performance comparison of imbalance-aware joint train-
ing (Imb. Joint), standard joint training (Std. Joint), and 8 im-
balanced learning techniques based on aAcc and gAcc using the
CIFAR-100 [28] test set in the last session of a 5-way 5-shot FS-
CIL setting. Imbalanced learning techniques are presented in three
categories: resampling-based, reweighting-based, and optimizer-
based. Imb. Joint consists of CMO [33], Balanced Softmax [35],
and ImbSAM [63], outperforming others by a large margin.

Table 1. Ablation study of each component in the imbalance-aware
joint training benchmark on CIFAR-100 [28] test set. All values
are measured in the last session of a 5-way 5-shot FSCIL setting.
Each component contributes to the performance improvement.

CMO  BalancedSoftmax ImbSAM  aAcc  gAcc

48.1  31.8
4 50.1 345
v 4 555 459
v v v 55.8 46.8

point out that using only resampling or reweighting without
an explicit optimization strategy may cause overfitting or
unstable training due to imbalanced gradient updates. These
insights suggest that integrating different imbalanced learn-
ing methods can yield more stable and robust performance
than relying on a single approach.

Building on these findings, we combine methods from
three categories of imbalanced learning and search for the
most effective configuration in the FSCIL setting. Specifi-
cally, we classify eight state-of-the-art imbalanced learning
methods into resampling [12, 16, 33], reweighting [7, 11,
35, 51], and optimizer-based [63] approaches, and conduct
30 random search trials per method [4, 30]. We then select
the top-performing method from each category and com-
bine them to form the new imbalance-aware joint training
benchmark for FSCIL. Note that, for evaluation, we adopt
both average accuracy (aAcc), a standard metric in FSCIL,

Imbalance-Aware Joint Training
1 2 3 4 5 6 7 8

-0.72

0.70

Standard Joint Training

Figure 4. Feature similarity between joint training models under
CIL and FSCIL settings on CIFAR-100 [28] test set based on Cen-
tered Kernel Alignment (CKA) [27]. The x- and y-axes represent
the incremental sessions. The upper triangular matrix shows the
similarity between standard joint training in CIL and imbalance-
aware joint training in FSCIL, while the lower triangular matrix
presents the similarity between standard joint training in CIL and
standard joint training in FSCIL. The brighter coloration in the up-
per triangle indicates that imbalance-aware joint training in FSCIL
yields features more similar to those of standard joint training in
CIL than standard joint training in FSCIL does.

and generalized average accuracy (gAcc) proposed by Tang
et al. [40], which offers a more balanced assessment with
explicit emphasis on incremental class performance.

Based on our experiments, we find that combining CMO
(resampling-based) [33], Balanced Softmax (reweighting-
based) [35], and ImbSAM (optimizer-based) [63] achieves
the best overall performance. It improves aAcc by 7%p and
gAcc by 15%p over standard joint training (Table 1), and
also outperforms all individual imbalanced learning meth-
ods (Figure 3). These results indicate that imbalance-aware
joint training can serve as a more meaningful reference than
standard joint training when developing practical guidelines
for real-world FSCIL scenarios. Therefore, we suggest this
approach as a new joint training benchmark for FSCIL. A
detailed analysis is provided in Section 3.2.

3.2. Analysis of Imbalance-Aware Joint Training

To evaluate the individual effectiveness of different types
of imbalanced learning techniques, we conduct ablation ex-
periments on the imbalance-aware joint training benchmark
using the CIFAR-100 test set. As demonstrated in Table 1,
the standard joint training model achieves 48.1% on aAcc
and 31.8% on gAcc. We then independently apply represen-
tative methods from each category—CMO, Balanced Soft-
max, and ImbSAM. Each method yields performance im-
provements, with the best results reaching 55.8% on aAcc
and 46.8% on gAcc. These findings indicate that each tech-



Table 2. Comparison of base session training setups of 8 FSCIL methods [23, 25, 39, 40, 48, 55, 60, 61].
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Table 3. Comparison of methods across multiple sessions on CIFAR-100 [28]. SO presents the base session and S1-S8 denote incremental
sessions. The best and second-best results are bolded and underlined. All methods are reproduced within our unified codebase. Std. Joint
and Imb. Joint denote standard joint training and imbalance-aware joint training, respectively.

aAcc in each session (%) aAcc S8
Method Architecture SO S1 S2 S3 S4 S5 S6 S7 S8 Base Inc. aAcc gAcc
Std. Joint ‘ ResNet-20 ‘ 71.5 73.1 68.1 63.2 59.7 56.3 53.1 51.2 48.1 78.8 1.9 ‘ 61.1 46.9
Imb. Joint ) 78.4 75.0 71.6 66.9 64.0 62.5 60.0 59.1 55.3 70.5 325 65.9 58.0
CEC [55] 76.4 57.0 53.1 50.0 476 453 43.7 41.7 39.7 50.5 235 50.5 459
FACT [60] 68.2 63.0 58.4 54.7 51.6 48.9 46.6 443 424 62.5 12.1 53.1 43.6
TEEN [48] 67.0 62.3 58.1 54.5 51.2 48.7 46.1 43.8 41.7 63.7 8.8 52.6 424
S3C [23] ResNet-20 56.6 54.7 524 492 4715 46.1 44.7 435 41.3 474 32.1 48.4 455
WaRP [25] 70.0 66.2 62.5 58.5 55.4 52.7 51.2 49.1 47.1 64.2 21.6 57.0 49.2
SAVC [39] 80.5 76.0 71.5 67.4 64.1 61.3 59.2 570 547 76.5 222 65.8 55.6
LIMIT [61] 74.1 69.9 66.2 62.2 59.1 56.3 54.2 52.1 49.7 68.9 21.1 60.4 51.2
YourSelf [40] DeiT-S 71.6 67.2 64.1 60.4 574 54.6 52.8 51.2 48.5 56.0 373 58.7 54.6

nique independently enhances performance, confirming that
imbalanced learning methods from different categories pro-
vide complementary benefits.

Furthermore, to evaluate how effectively the imbalance-
aware joint training approach addresses the ICS problem in
FSCIL, we use Centered Kernel Alignment (CKA) [27] to
measure the similarity of network representations between
joint training models in CIL and FSCIL settings (Figure 4).
The upper triangular matrix shows the similarities between
imbalance-aware joint training in FSCIL and standard joint
training in CIL, while the lower one represents the similar-
ities between standard joint training in FSCIL and CIL. As
indicated by the brighter coloration, the upper triangle ex-
hibits consistently higher similarity across all sessions. This
observation suggests that imbalance-aware joint training in
FSCIL produces representations more closely aligned with
those of standard joint training in CIL than standard joint
training in FSCIL does.

4. Towards a Practical Guideline for FSCIL

4.1. Experimental Setup
4.1.1. General Settings

Dataset. Following prior works, we conduct experiments
on CIFAR-100 [28], minilmageNet [37], and CUB-200 [47]
datasets using the data splits in Tao et al. [41]. For CIFAR-
100 and minilmageNet, 60 classes are allocated to the base
session, and each of the 8 incremental sessions contains 5
classes. For CUB-200, 100 classes are used for the base ses-
sion, followed by 10 incremental sessions with 10 classes
each. All datasets are evaluated under the 5-shot setting.

Evaluation Metrics. Following common practice in FSCIL
research [41, 55], we use average accuracy (aAcc) as our
primary evaluation metric. Additionally, unlike prior works
that report only the overall average accuracy, we separately
report the average accuracy of base classes and incremental
classes. We also adopt generalized average accuracy (gAcc)
proposed by Tang et al. [40], which balances the evaluation
of base and incremental classes using a tunable parameter
« that controls their respective weights.

Implementation Details. As the backbone feature extrac-
tor, all methods except for YourSelf [40] utilize ResNet-
20 [18] for CIFAR-100, and ResNet-18 for minilmageNet
and CUB-200. YourSelf employs DeiT-S [43], a ViT-based
architecture, across all three datasets. All our experiments
are conducted on a single NVIDIA A5000 GPU. To ensure
a consistent environment, we incorporate all methods into a
unified codebase. All reimplementations are based on pub-
licly available GitHub repositories.

4.1.2. A Standardized Evaluation Protocol for FSCIL

In this paper, we evaluate existing FSCIL methods and joint
training approaches after resolving inconsistencies in their
experimental setups. Although most methods follow a simi-
lar training pipeline, subtle but unfair differences undermine
the reliability of performance comparisons. To address this,
we identify two major inconsistencies as shown in Table 2,
and standardize them to enable a unified and fair compari-
son of eight FSCIL methods and joint training.

Exposure of test set during training (P1). A major issue
in prior FSCIL research is the use of the test set as a vali-
dation set. Many methods select the best-performing epoch



Table 4. Comparison of methods across multiple sessions on minilmageNet [37]. SO represents the base session and S1-S8 correspond to
incremental sessions. The best and second-best results are bolded and underlined. All methods are reproduced within our unified codebase.
Std. Joint and Imb. Joint denote standard joint training and imbalance-aware joint training, respectively.

‘ Architecture ‘ aAcc in each session (%) ‘ aAcc S8 ‘

Method SO S1 S2 S3 S4 S5 S6 S7 S8 Base Inc. aAcc gAcc
Std. Joint ‘ ResNet-18 ‘ 71.0 66.7 62.1 58.5 54.8 51.5 48.7 46.3 44.2 ‘ 72.3 2.1 ‘ 56.0 43.0
Imb. Joint 710 694 653 629 590 571 551 536 517 | 667 291 | 60.6 535
CEC [55] 70.9 65.0 61.1 58.1 55.5 52.7 50.1 48.2 46.7 65.2 18.9 56.5 47.9
FACT [60] 69.5 64.7 60.4 57.0 53.8 50.8 48.0 46.0 44.1 66.8 9.9 54.9 44.4
TEEN [48] 64.9 60.7 56.9 54.4 52.0 494 47.0 45.2 43.8 58.0 224 52.7 45.8
S3C [23] ResNet-18 57.7 539 51.1 49.0 47.6 45.1 42.8 41.4 40.7 514 24.9 47.7 423
WaRP [25] 71.5 66.7 63.0 60.2 57.7 55.1 52.5 50.9 49.7 65.9 254 58.6 50.8
SAVC [39] 80.0 754 71.2 67.5 64.5 61.1 58.1 56.0 54.1 76.2 21.1 65.3 55.6
LIMIT [61] 72.9 66.4 62.3 59.0 56.0 53.3 50.5 48.6 47.1 64.2 21.6 57.3 49.2
YourSelf [40] DeiT-S 71.8 66.0 62.3 59.4 57.4 54.5 52.0 50.5 49.4 60.9 32.2 58.2 52.6

Table 5. Comparison of methods across multiple sessions on CUB-200 [47]. SO presents the base session and S1-S10 denote incremental
sessions. The best and second-best results are bolded and underlined. All methods are reproduced within our unified codebase. Std. Joint
and Imb. Joint denote standard joint training and imbalance-aware joint training, respectively.

‘ Architecture aAcc in each session (%) ‘ aAcc S10

Method SO S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 | Base Inc. | aAcc  gAcc
Std. Joint ‘ ResNet-18 ‘ 76.8 73.0 694 665 648 638 605 597 60.6 59.5 583 ‘ 774  40.1 ‘ 62.6 57.0
Imb. Joint ‘ 775 749 719 681 679 653 636 626 625 623 619 | 732 514 | 651 628
CEC [55] 726 682 633 58.0 574 53.1 510 493 465 462 446 | 662 24.1 52.2 48.1
FACT [60] 778 737 700 656 643 612 598 589 576 565 552 | 73.0 38.1 61.0 57.1
TEEN [48] 786 737 69.8 648 640 606 597 588 57.6 56.0 549 | 705 40.0 | 60.7 57.8
S3C [23] ResNet-18 62.1 60.6 57.8 543 553 525 519 510 507 504 499 | 545 44.1 52.7 52.1
WaRP [25] 770 734 70.0 660 648 61.8 607 579 582 573 562 | 723 409 | 614 579
SAVC [39] 780 750 719 676 671 644 638 619 61.0 605 599 | 75.1 454 64.3 60.4
LIMIT [61] 673 63.1 58.7 544 533 494 469 448 434 423 403 | 58.1 233 | 48.2 44.2
YourSelf [40] DeiT-S 808 778 747 720 689 655 646 641 625 631 625 73.4 52.3 66.4 64.3

in the base session using the test set. Some methods even
use the test set from the last incremental session—which
covers the entire label space of the dataset—for hyperpa-
rameter tuning [55, 64]. This leakage can lead to overfitting
to the test data and result in unreliable evaluations of gen-
eralization performance [5]. WaRP [25] acknowledges this
issue and avoids the usage of the test set by selecting the
checkpoint from the final epoch instead.

Such inconsistent usage of the test set prevents fair com-
parisons across methods. To resolve this, we create a new
validation set by splitting the original training set in a 9:1
ratio. In addition, for methods that retrain the entire model
during incremental sessions [40], we standardize the eval-
uation by using model weights from the final epoch, since
reserving a separate validation set is impractical due to the
limited size of incremental data.

Unfair usage of pre-trained encoders (P2). Another issue
is that some FSCIL methods leverage additional informa-
tion from pre-trained encoders. For example, YourSelf [40]
employs knowledge distillation from a CNN-based state-
of-the-art teacher model [52] to accelerate the convergence
of a ViT-based encoder. This teacher model requires prior
knowledge of the total number of classes, which may com-

promise the fairness of the comparison. To ensure consis-
tency, we modify YourSelf to perform knowledge distilla-
tion only from a model trained under our standardized eval-
uation protocol, without such additional information. Like-
wise, we exclude Park et al. [32] from our comparison, as it
uses large-scale pre-trained encoders like CLIP that already
demonstrate strong zero-shot classification performance.

4.2. Comparison of FSCIL and Joint Training

In this section, we conduct a comprehensive comparison of
existing FSCIL methods and joint training approaches (i.e.,
standard joint training and imbalance-aware joint training)
across three datasets. We then provide an in-depth analysis
and discussion on which approach is most suitable, depend-
ing on the availability of previously used training data.

First, we present the experimental results on CIFAR-100
in Table 3. The results show that the standard joint train-
ing approach achieves strong performance only on the base
classes, while its incremental accuracy is extremely low at
1.9%. In contrast, when incorporating imbalanced learning
techniques to joint training, we observe a significant im-
provement in the incremental accuracy (32.5%), which in
turn leads to improvements in aAcc and gAcc.
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Figure 5. Performance comparison across different training times on CIFAR-100 [28] test set. Training times are presented on a log scale.
Std. Joint and Imb. Joint denote standard joint training and imbalance-aware joint training, respectively.

Notably, this imbalance-aware joint training approach
also outperforms existing FSCIL methods in both aAcc and
gAcc. While YourSelf yields the highest incremental class
accuracy among all methods, it shows relatively low perfor-
mance on the base classes, resulting in lower overall perfor-
mance compared to imbalance-aware joint training. These
findings suggest that, when the previous training dataset is
accessible, imbalance-aware joint training may be a more
effective strategy than FSCIL methods.

However, unlike in CIFAR-100, FSCIL methods outper-
form imbalance-aware joint training on the other datasets.
On minilmageNet, for example, the FSCIL method SAVC
achieves the best overall results with an aAcc of 65.3% and
a gAcc of 55.6%, surpassing imbalance-aware joint training
by 4.7%p and 2.1%p, respectively (Table 4). Similarly, on
CUB-200, YourSelf demonstrates a gAcc of 64.3%, outper-
forming the joint training approach (62.8%) as shown in Ta-
ble 5. The fact that FSCIL methods—without access to pre-
vious training data—can perform better than the imbalance-
aware joint training approach that leverages such data chal-
lenges the conventional belief that more information neces-
sarily leads to better performance.

Discussion. The results in this section suggest that, despite
having access to additional data, current imbalanced learn-
ing techniques may perform worse than FSCIL approaches
under extreme data distributions—particularly when only a
few classes have very limited samples. This highlights the
need for future research on imbalanced learning approaches
that can better handle such challenging scenarios. Since FS-
CIL methods have shown strong performance in these cases,
their strategies could be effectively adapted for imbalanced
learning. In particular, since previous training datasets are
typically accessible in imbalanced learning, techniques in
FSCIL that simulate past data can be replaced with actual
use of previous dataset for direct application to imbalanced

learning problems. For example, while YourSelf stores only
the distribution of past data, this strategy can be extended to
directly utilize the full previous training dataset.

4.3. Resource-Aware Comparison

In this section, we analyze each method based on its training
time to provide practical guidelines for users on which ap-
proach to adopt depending on available training resources.
Training efficiency is assessed using two metrics (aAcc and
gAcc). To account for varying training times, we evaluate
the performance of each model at [100, 200, 400, 600, 800,
1000] epochs. However, due to their longer training times,
the imbalance-aware joint training and YourSelf methods
are evaluated only at [100, 200, 400, 500] epochs and [100,
200] epochs, respectively.

Figure 5a shows the aAcc values for each method over
training time. We observe that FSCIL methods with longer
training durations, such as SAVC and YourSelf, generally
achieve higher aAcc than those with shorter training times.
Figure 5b presents the gAcc values for each method, which
reveal a different trend. Unlike the results in aAcc, meth-
ods with longer training times, including SAVC and stan-
dard joint training, achieve lower gAcc. This suggests that
they maintain strong base class performance but struggle
with incremental class learning. In contrast, the imbalance-
aware joint training approach consistently records the high-
est gAcc across all epochs, outperforming FSCIL methods
regardless of training duration.

Interestingly, some methods with shorter training times,
such as LIMIT and TEEN, show a declining trend in gAcc
as training progresses. This pattern suggests that prolonged
training on the base session can lead to overfitting to base
classes. Conversely, FACT exhibits the opposite tendency,
with gAcc improving over time. This indicates that FACT
retains greater flexibility during training and benefits from



longer training durations.

These results suggest that when users possess sufficient
computational resources and access to the previous training
dataset, the imbalance-aware joint training method can be a
viable choice. However, in cases where resources are suffi-
cient but access to prior data is restricted, SAVC or YourSelf
are strong alternatives, despite their longer training times.
When both computational resources and access to previous
data are limited, LIMIT offers a better balance between ef-
ficiency and overall performance.

5. Conclusion

Few-shot class-incremental learning (FSCIL) is particularly
challenging, as models must continually accommodate new
classes with only a few samples per class. In this paper, we
highlight a practical but relatively underexplored problem
in the FSCIL literature: the lack of an established bench-
mark for evaluating whether leveraging previously learned
data, when available, is beneficial in the FSCIL setting. We
point out that standard joint training, which serves as the
upper bound in conventional CIL, is unsuitable as a bench-
mark in FSCIL due to its instability under imbalanced data
distributions. To address this issue, we explore imbalanced
learning techniques that enhance the performance of joint
training in FSCIL and suggest a new joint training bench-
mark. We then conduct extensive experiments to compare
this imbalance-aware joint training benchmark with state-
of-the-art FSCIL methods. Based on these comparisons, we
offer practical guidelines for determining whether utilizing
past data is beneficial in FSCIL scenarios.

Limitations. We acknowledge that we are unable to repro-
duce a broader range of recent FSCIL methods and there-
fore cannot include them in our comparisons. Additionally,
while our experiments allow for a performance comparison
between FSCIL and joint training, we cannot provide a de-
tailed analysis of why certain methods outperform others
due to the limited number of datasets used in the evaluation.
Future work focuses on covering a more diverse set of FS-
CIL approaches and conducting experiments on a broader
range of real-world datasets, thereby providing more com-
prehensive and practical insights.
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Figure Al. Average accuracies of base and incremental classes in
standard joint training on the CIFAR-100 test set by the number of
base session training epochs. All results are reported from the last
incremental session.

Performance Bias in Standard Joint Training. Figure Al
illustrates the average accuracies of base and incremental
classes in the FSCIL setting for standard joint training. We
observe that standard joint training achieves near-zero accu-
racy on incremental classes, and its overall performance is
heavily biased toward base classes. Such gap between base
and incremental accuracies grows linearly as the number of
training epochs in the base session increases.

Table Al. Average false positive (FP) rate and false negative (FN)
rate of standard joint training on CIFAR-100 test set under both
the CIL and FSCIL settings.

Method FPrate FN rate

Standard Joint Training (CIL) 0.254 0.255
Standard Joint Training (FSCIL)  0.488 0.521

Inter-Task Class Separation (ICS) in Joint Training. To
highlight the ICS problem in standard joint training under
the FSCIL setting, we quantitatively evaluate the quality of
decision boundary formation using false positive (FP) and
false negative (FN) rates. As shown in Table A1, the joint
training model exhibits higher FP and FN rates in the FSCIL
setting than in the CIL setting on average. This shows that
the ICS problem is more severe in standard joint training
under the FSCIL setting compared to the CIL setting.

Exploring Imbalanced Learning in FSCIL. Figure A2
compares the base and incremental class accuracies across
the top-5 trials for each method. The imbalance-aware joint
training approach achieves markedly higher incremental ac-
curacy, whereas most other approaches—including the stan-
dard joint training—show near-zero accuracy on incremen-
tal classes, indicating severe overfitting to base classes.
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Figure A2. Base and incremental class performance comparison of
imbalance-aware joint training (/mb. Joint), standard joint training
(Std. Joint), and 8 imbalance learning techniques on CIFAR-100
test set in the last session of a 5-way 5-shot FSCIL setting. The fig-
ure shows the base and incremental class accuracies of the top-5
trials for each method after 30 iterations of hyperparameter ran-
dom search. The best trials are determined according to the aAcc.
Imb. Joint consists of CMO, Balanced Softmax, and ImbSAM.
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Figure A3. Comparison of FSCIL method performance rankings
on CIFAR-100 test set before and after applying our standardized
evaluation protocol. Rankings are presented in descending order
from left to right.

Performance Rankings Before and After Protocol Stan-
dardization. Figure A3 illustrates the ranking shifts of ex-
isting FSCIL methods in terms of aAcc before and after ap-
plying our standardized evaluation protocol. The “Before”
rankings are based on the values reported in prior studies,
whereas the “After” rankings reflect the results reproduced
under our proposed protocol. All methods except for CEC
and WaRP show changes in ranking. Particularly, S3C and
LIMIT exhibit the largest shifts, each moving by four posi-
tions. These ranking shifts highlight inconsistencies in pre-
vious FSCIL experiments and evaluation, underscoring the
need for a standardized protocol in future studies.
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Figure A4. Performance comparison of base and incremental classes across different training times on CIFAR-100 test set. Training times
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are presented on a log scale. Std. Joint and Imb. Joint denote standard joint training and imbalance-aware joint training, respectively.

Base and Incremental Performance by Training Time.
Figure A4 shows the aAcc of base and incremental classes
with respect to training time across different methods. For
base classes, standard joint training and SAVC achieve the
highest performance, benefiting from their longer training
durations. In contrast, YourSelf and imbalance-aware joint
training mark the best results for incremental classes. Over-
all, imbalance-aware joint training maintains strong perfor-
mance on both the base and incremental classes. Notably,
TEEN and LIMIT exhibit a trend in which extended training
improves base class performance but degrades incremental
class performance, likely due to overfitting to base classes
as the number of training epochs increases.
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