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Introduction

Objective

• Develop a model that remains robust against data contamination in medical imaging.
• Ensure stable classification of normal / abnormal and subtyping even with corrupted data.
• Data contamination is a key factor that lowers model reliability and hinders accurate clinical decisions.

• Noise Injection – Unintended noise degrades image quality and obscures diagnostic features.
• Label Error – Incorrect labels mislead the model, causing inaccurate predictions.
• Poisoning Attack – Malicious data intentionally inserted into training sets to reduce performance.

Types of Data Contamination

Fig 1. An example of noise injection. Fig 2. An example of poisoning attack.
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Introduction

Poisoning Attacks in the Medical Domain
• Finlayson, et al. (2019) [1] experimentally demonstrated that label flipping attacks cause cancer diagnosis

models to misclassify normal as malignant or vice versa.

• As medical systems become increasingly digitalized (e.g., telemedicine), such attacks can be executed more
easily and at larger scales.

• Steinhardt, et al. (2017) [2] proposed a model that maintains stability even with partially poisoned datasets.

• Alzubaidi, et al. (2024) [3] introduced model ensemble feature fusion (MEFF) for robust medical imaging.
Trained multiple models through adversarial training, which intentionally generates various types of attacks
and train models to become robust against them.

Related Work – Defense Approaches

Fig 3. Workflow of the MEFF framework.
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Methods

Overview
• The figure illustrates the deep mutual learning (DML) process using two models (feature extractors) and a

shared simplex equiangular tight frame (ETF) classifier.

Fig 4. Overall framework of the proposed method.
Each model fits its feature vectors to a shared ETF classifier and 
mutually performs knowledge distillation to collaboratively learn 
robust feature representations using the fixed ETF as an anchor.
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Methods

Simplex Equiangular Tight Frame (ETF) Classifier
• A simplex ETF is a mathematical structure that maximizes the pair-wise angles between all vectors [4].

• The ETF classifier is introduced to enforce well-separated and uniformly distributed class representations in
the feature space [5].

• It minimizes confusion between different classes by ensuring equal angular distances among class vectors.

Fig 5. Illustration of a normal classifier and an ETF classifier.
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Methods

Rectification (Rect)
• Rect [6] operates on ETF vectors to address class imbalance and achieve finer inter-class boundaries.

• Classes with fewer samples are assigned longer feature vectors.

• The formula assigns weights inversely proportional to class frequency (𝑐!)
• It assigns higher weights to the minority classes thereby promoting balanced learning across all categories.

B: batch size
U: number of classes in a batch
𝒄𝒊: number of samples for class 𝑖

Angle: class separation
Length: class imbalance
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Methods

Deep Mutual Learning (DML)
• DML [7] is a training paradigm where multiple models learn simultaneously while sharing knowledge with

each other. Instead of learning independently, each model incorporates the peer’s predictions into its own
learning process, improving generalization for all models.

• To maximize ensemble effects, DML allows models to overfit to the training data.

• We perform knowledge distillation between the inner-products of the model output vectors and the ground-
truth ETF vectors for each model.

Fig 6. The deep mutual learning process.
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Evaluation Metric

Combined Performance Drop
• Prior works measured robustness by comparing model performance only under poisoned conditions [8, 9], 

which does not accurately reflect the model’s robustness considering that higher scores may simply indicate
stronger baseline model performance.

• Therefore, we evaluate each model on both clean and poisoned datasets and compute the drop ratio.

• For each metric 𝑀, the percentage drop between the model’s performance on clean data 𝑀"#$%&' and on
attacked or noisy data 𝑀&((&)* is calculated as follows:

• After calculating the percentage drop for each performance metric 𝑀+, 𝑀,, … ,𝑀", we take their average to
obtain the combined performance drop:
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Experiments

Experimental Settings

• Data split = 7 : 2 : 1 (train : validation : test)

• Optimizer = Adam (LR: 0.0001, weight decay: 0.001)

• Patience (early stopping) = 20
• Scheduler = ReduceLROnPlateau

• For performance drop calculation:

• Experiment 1: Train and test on the original (clean) dataset

• Experiment 2: Train on the original dataset / add Gaussian noise to the test set (Mean: 0.0, Std: 0.01)
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Experiments

Results – Experiment 1

Model Accuracy F1 Score Precision

ResNet-50 (Baseline) 0.384 0.314 0.288

ResNet-50 + ETF 0.443 0.365 0.357

ResNet-50 + ETF +Rect 0.463 0.399 0.420

ResNet-50 + ETF +Rect +DML 0.467 0.449 0.469

Table 1. Performance comparison of different models on medical image classification task (clean dataset).

• Combining ETF, Rect, and DML outperforms all other approaches across all metrics.
• Accuracy improved by approximately 9% points, while F1-score and Precision increased by about 15% points.
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Experiments

Results – Experiment 2

Model Accuracy F1 Score Precision

ResNet-50 (Baseline) 0.240 0.171 0.260

ResNet-50 + ETF 0.314 0.280 0.390

ResNet-50 + ETF +Rect 0.332 0.293 0.283

ResNet-50 + ETF +Rect +DML 0.315 0.376 0.287

Table 2. Performance comparison of different models on medical image classification task (noisy dataset).

• When noise is added to the test set, the performance with and without DML is inconsistent across metrics.
• Therefore, the combined performance drop is needed to provide a more consistent evaluation of robustness.
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Experiments

Results – Experiment 2

Model Combined Drop Accuracy Drop F1 Score Drop Precision Drop

ResNet-50 (Baseline) 12.57% 37.5% 14.3% 2.8%

ResNet-50 + ETF 9.72 % 29.12% 8.5% - 3.3 %

ResNet-50 + ETF +Rect 9.51% 28.29% 10.6% 13.7%

ResNet-50 + ETF +Rect +DML 10.93% 32.55% 7.3% 18.2%

Table 2. Performance comparison of different models on medical image classification task (noisy dataset).

• The model without DML showed the lowest combined drop, indicating the smallest performance drop under attack.
• This demonstrates combining ETF and Rect (without DML) provides the highest robustness.
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Conclusion

Discussion
• We proposed and evaluated a new framework for efficient and robust medical image classification.

• By combining the ETF classifier with Rect, our proposed approach showed stronger robustness compared
to conventional classification models.

• Incorporating DML further enhanced the model’s overall performance and resilience.

• We introduced a novel robustness metric to evaluate model stability against malicious data perturbations
such as poisoning attacks.

• First, using only the ETF classifier and Rect sometimes proved more effective than combining it with DML.
Therefore, additional experiments depending on the intensity of the poisoning attack are required.

• Second, further validation under diverse real-world clinical attack scenarios is needed.
• Lastly, a standardization process of the proposed robustness metric is required to enable its broader adoption

in future studies.

Limitations
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