

Development of a memory-efficient machine learning pipeline for fake image detection using statistical features

Shiwon Kim,
Digital Healthcare Lab,
Department of Digital Analytics,
Yonsei University College of Computing

Synthetic Chest X-ray Image

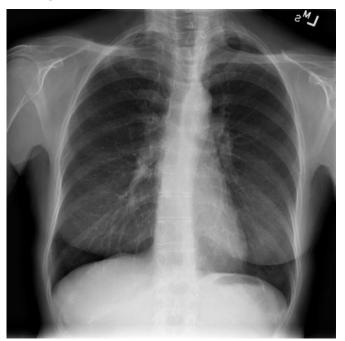
Generated Image

Open Dataset

- √ image non_synthetic
 - > Normal
 - > **n** Pneumonia
- √ i synthetic
 - > Normal
 - > **neumonia**

Type: real (non-synthetic)

Diagnosis: normal

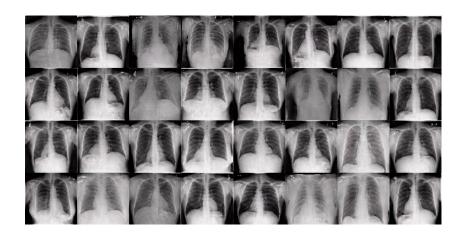


Type: synthetic **Diagnosis:** normal

Synthetic Chest X-ray Image

GAN

- Generative adversarial networks
- DCGAN (Deep Convolutional GAN)¹

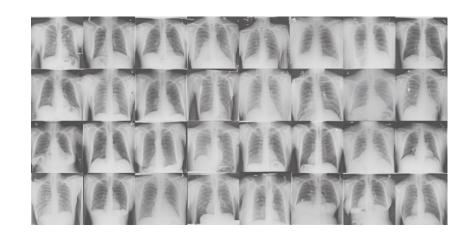


Generated Image

Open Dataset

Diffusion

- Probabilistic generative models
- DDPM (Denoising Diffusion Probabilistic Models)²



Synthetic Chest X-ray Image

Generated Image

Open Dataset

- a. CIFAKE: Real and AI-Generated Synthetic Images³
- b. OpenForensics: Multi-Face Forgery Detection and Segmentation In-The-Wild⁴

Information	CIFAKE	OpenForensics	
# of images	60,000 real / 60,000 fake	115,325 (multi-face)*	
Generation method	Stable diffusion	GAN	
Pair-wise	Υ	Ν	
Multi-object	N	Υ	

Table 1. Information about the datasets used for fake image detection experiments.

Synthetic Chest X-ray Image

Generated Image

Open Dataset

- a. CIFAKE: Real and AI-Generated Synthetic Images³
- b. OpenForensics: Multi-Face Forgery Detection and Segmentation In-The-Wild⁴



CIFAKE

OpenForensics

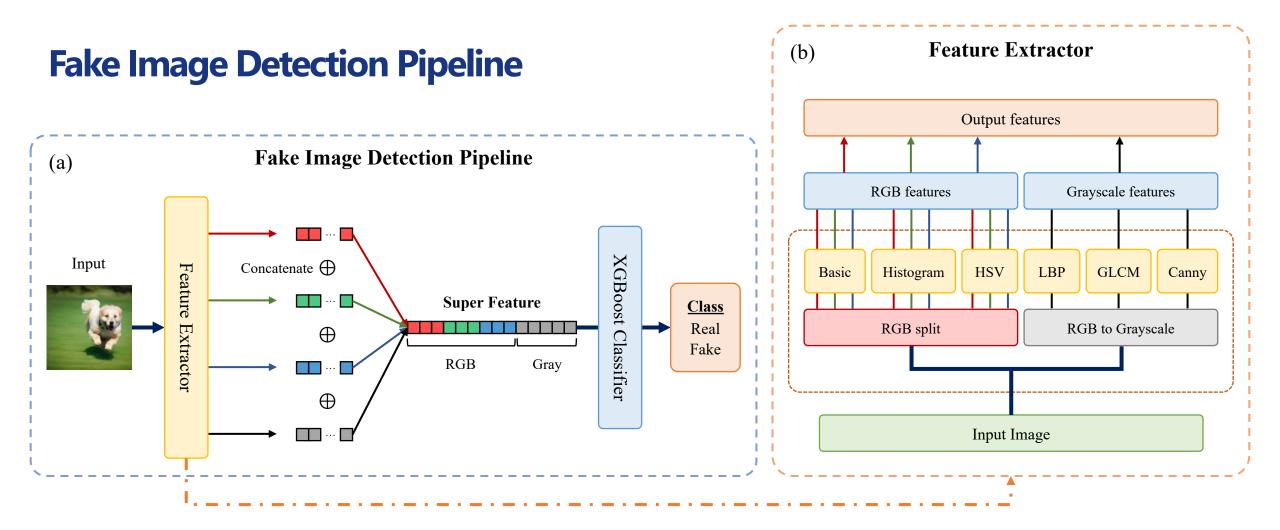


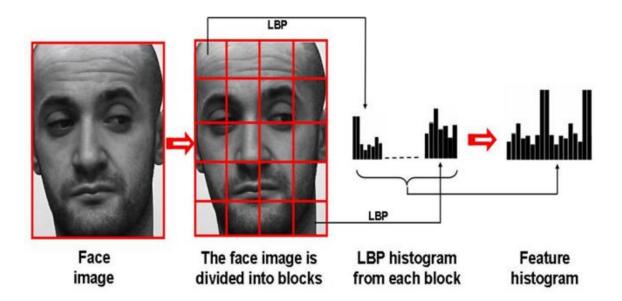
Fig 1. Overview of the fake image detection pipeline.

Fake Image Detection Pipeline

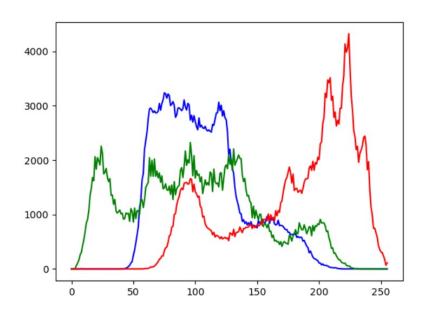
- Feature extraction
 - Basic statistical values
 - Mean, standard deviation, median, skewness, kurtosis
 - II. Image texture pattern
 - LBP (Local Binary Patterns), Haralick texture & GLCM (Gray-Level Co-Occurrence Matrix)
 - III. Image pixels distribution
 - Image histogram, HSV color space
 - IV. Image edge / boundary
 - Canny edge

- Basic statistical values
 - Mean $\bar{X} = \frac{\sum_{i=1}^{N} X_i}{N}$
 - Standard deviation $\sigma^2 = \frac{\sum_{i=1}^{N} (X_i \bar{X})^2}{N}$
 - Median
 - Skewness $Skew = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{(X_i \bar{X})}{\sigma} \right]^3$
 - Kurtosis $Kurt = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{(X_i \bar{X})}{\sigma} \right]^4$

- LBP (Local Binary Pattern)⁵
 - The LBP methodology has led to significant progress in texture analysis
 - Has been very successful in **computer vision** problems such as face analysis and motion analysis

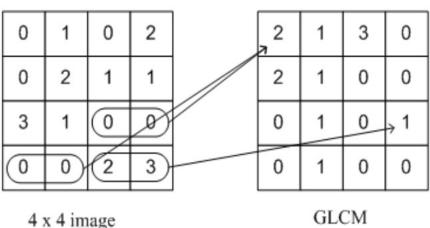


- Image Histogram⁶
 - Displays image characteristics with image pixel values on the x-axis and frequency on the y-axis
 - A graph showing the distribution of the number of bright and dark pixels



- GLCM (Gray-Level Co-Occurrence Matrix)^{7,8}
 - In statistical texture analysis, texture features are computed from the **statistical distribution** of observed **combinations of intensities** at specified positions relative to each other in the image
 - The GLCM method is a way of extracting the second order statistical texture features

neighbour pixel value> ref pixel value:	0	1	2	3
0	0,0	0,1	0,2	0,3
1	1,0	1,1	1,2	1,3
2	2,0	2,1	2,2	2,3
3	3,0	3,1	3,2	3,3



0.16	0.08	0.25	0
0.16	0.08	0	0
0	0.08	0	0.08
0	0.08	0	0

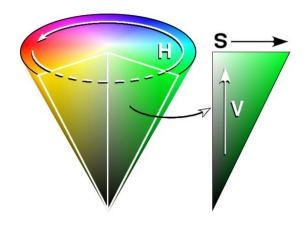
Nomalized GLCM

- GLCM (Gray-Level Co-Occurrence Matrix)^{7,8}
 - GLCM-based features

$$\begin{aligned} &Homogenity = \sum_{i,j=0}^{N-1} \frac{P_{ij}}{1+(i-j)^2} \\ &Entropy = \sum_{i,j=0}^{N-1} -\log(P_{ij})P_{ij} \end{aligned}$$

$$\begin{split} &Contrast = \sum_{i,j=0}^{N-1} P_{i,j} (i-j)^2 \\ &Correlation = \sum_{i,u=0}^{N-1} P_{i,j} \frac{(i-\mu)(j-\mu)}{\sigma^2} \\ &Energy = \sum_{i,j=0}^{N-1} (P_{ij})^2 \end{split}$$

- HSV Color Space⁹
 - Hue
 - **S**aturation
 - Value
- Canny Edge detection¹⁰
 - Gaussian filtering
 - Gradient calculation
 - Non-maximum suppression
 - Hysteresis edge tracking



Fake Image Detection Performance

a. CIFAKE

• 5-folds average / (Train + valid) 80% and test 20%

Metrics	Ours	ResNet-50
Accuracy	0.900	0.779
Sensitivity (recall)	0.902	0.788
Specificity	0.897	0.795
AUROC	0.965	0.871
Training time	1269s	1201s
GPU memory allocation	285MB	1991MB

Table 2. Comparison of our method and ResNet-50 on Al-generated image detection with CIFAKE dataset.

Fake Image Detection Performance

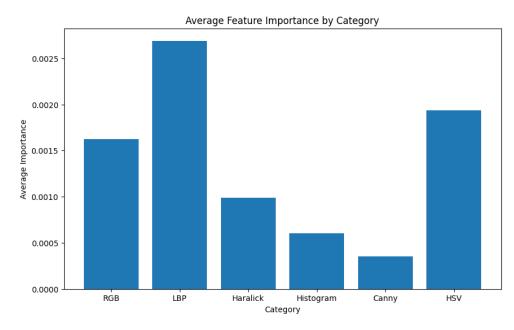
- b. OpenForensics
 - 5-folds average / (Train + valid) 80% and test 20%

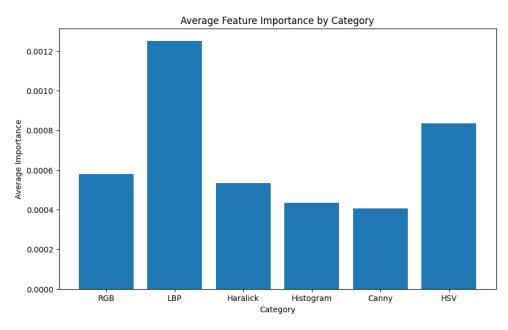
Metrics	Ours	ResNet-50
Accuracy	0.668	0.559
Sensitivity (recall)	0.658	0.534
Specificity	0.673	0.584
AUROC	0.729	0.580
Training time	694s	803s
GPU memory allocation	319MB	1971MB

Table 3. Comparison of our method and ResNet-50 on forged face detection with OpenForensics dataset.

Model Explainability

- Average feature importance by category
 - Basic statistics (RGB) / LBP / GLCM (Haralick) / Histogram / Canny edge / HSV





CIFAKE OpenForensics

Ablation Study

- Average performance by number of features
 - CIFAKE / 5-folds average

Metrics	Accuracy	Sensitivity	Specificity	AUROC
(1) LBP	0.696	0.676	0.718	0.765
(2) LBP+HSV	0.818	0.821	0.819	0.904
(3) LBP+HSV+RGB	0.838	0.845	0.833	0.921
(4) LBP+HSV+RGB+HAR	0.844	0.845	0.844	0.924
(5) LBP+HSV+RGB+HAR+HIS	0.898	0.903	0.900	0.967
(6) LBP+HSV+RGB+HAR+HIS+CAN	0.900	0.902	0.897	0.965

Table 4. Average performance by number of features on CIFAKE.

Ablation Study

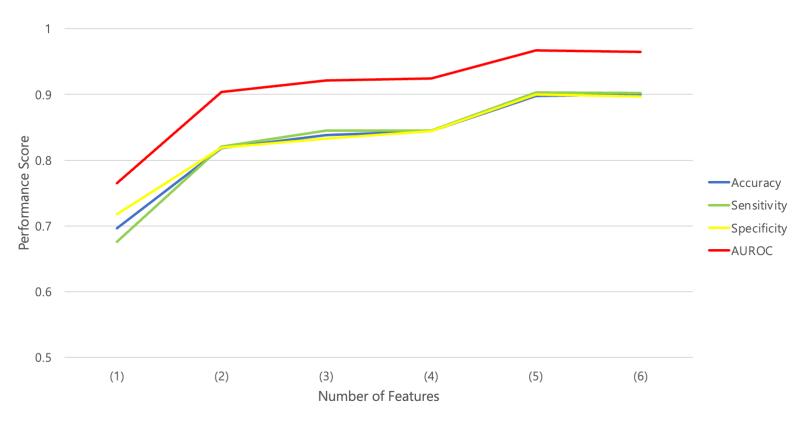


Fig 2. Visualization of average performance by number of features on CIFAKE.

Conclusion

- Developed an accurate but memory-efficient fake image detection pipeline
 - Proved the superiority of our method over ResNet-50 via 5-fold validation on various datasets
 - Quantitatively verified the efficiency of our pipeline in terms of time and memory consumption
- Analyzed feature importance for enhanced model explainability
 - Proved the robustness of our method in detecting fake images created using generative AI models
 - Observed the effectiveness of each feature in improving the performance of fake image detection

References

- [1] Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015).
- [2]Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models." Advances in neural information processing systems 33 (2020): 6840-6851.
- [3] Bird, J.J., Lotfi, A. (2023). CIFAKE: Image Classification and Explainable Identification of Al-Generated Synthetic Images. arXiv preprint arXiv:2303.14126.
- [4] Le, Trung-Nghia et al. "OpenForensics: Large-Scale Challenging Dataset For Multi-Face Forgery Detection And Segmentation In-The-Wild." 2021 IEEE/CVF International Conference on Computer Vision (ICCV) (2021): 10097-10107.
- [5] Pietikäinen, Matti, et al. Computer vision using local binary patterns. Vol. 40. Springer Science & Business Media, (2011).
- [6] Raju, P. Daniel Ratna, and G. Neelima. "Image segmentation by using histogram thresholding." International Journal of Computer Science Engineering and Technology 2.1 (2012): 776-779.
- [7] Mohanaiah, P., P. Sathyanarayana, and L. GuruKumar. "Image texture feature extraction using GLCM approach." International journal of scientific and research publications 3.5 (2013): 1-5.
- [8] 윤종일, and 김종배. "GLCM 특징정보 기반의 자동차 종류별 분류 방안." 한국정보처리학회 학술대회논문집 18.1 (2011).
- [9] Sural, Shamik, Gang Qian, and Sakti Pramanik. "Segmentation and histogram generation using the HSV color space for image retrieval." Proceedings. International Conference on Image Processing. Vol. 2. IEEE, 2002.
- [10] Bao, Paul, Lei Zhang, and Xiaolin Wu. "Canny edge detection enhancement by scale multiplication." IEEE transactions on pattern analysis and machine intelligence 27.9 (2005): 1485-1490.

Appendix

		Synthetic CXR	Generated Image		
	Performance Metrics		DCGAN	DDPM	
ResNet-50	Accuracy	0.909	0.993	0.880	
	Sensitivity (recall)	0.889	0.987	0.852	
	Specificity	0.928	1.000	0.906	
	AUROC	0.970	0.998	0.953	
Ours	Accuracy	0.994	1.000	0.964	
	Sensitivity (recall)	0.998	1.000	0.972	
	Specificity	0.992	1.000	0.953	
	AUROC	0.995	1.000	0.970	

Table A1. Comparison of our method and ResNet-50 on Synthetic CXR dataset and DCGAN-/DDPM-generated images.

Appendix

Feature Analysis

- Average performance when only using features from a single category
 - CIFAKE / 5-folds average

	Types of Features					
Performance	RGB Features			Grayscale Features		
Metrics	RGB	Histogram	HSV	LBP	Haralick	Canny
Accuracy	0.742	0.728	0.760	0.696	0.838	0.688
Sensitivity	0.754	0.717	0.760	0.676	0.840	0.660
Specificity	0.728	0.736	0.759	0.718	0.838	0.715
AUROC	0.744	0.808	0.845	0.765	0.920	0.753

Table A2. Average performance of individual feature types.

